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8-1 Introduction

The part of the computer that performs the bulk of data-processing operations
is called the central processing unit and is referred to as the CPU. The CPU is
made up of three major parts, as shown in Fig. 8-1. The register set stores
intermediate data used during the execution of the instructions. The arithmetic
logic unit (ALU) performs the required microoperations for executing the
instructions. The control unit supervises the transfer of information among the
registers and instructs the ALU as to which operation to perform.

The CPU performs a variety of functions dictated by the type of in-
structions that are incorporated in the computer. Computer architecture is
sometimes defined as the computer structure and behavior as seen by the
programmer that uses machine language instructions. This includes the in-
struction formats, addressing modes, the instruction set, and the general
organization of the CPU registers.

One boundary where the computer designer and the computer pro-
grammer see the same machine is the part of the CPU associated with the
instruction set. From the designer’s point of view, the computer instruction set
provides the specifications for the design of the CPU. The design of a CPU is
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Figure 8-1 Major components of CPU.

a task that in large part involves choosing the hardware for implementing the
machine instructions. The user who programs the computer in machine or
assembly language must be aware of the register set, the memory structure,
the type of data supported by the instructions, and the function that each
instruction performs.

Design examples of simple CPUs are carried out in Chaps. 5 and 7. This
chapter describes the organization and architecture of the CPU with an empha-
sis on the user’s view of the computer. We briefly describe how the registers
communicate with the ALU through buses and explain the operation of the
memory stack. We then present the type of instruction formats available, the
addressing modes used to retrieve data from memory, and typical instructions
commonly incorporated in computers. The last section presents the concept of
reduced instruction set computer (RISC).

8-2 General Register Organization

In the programming examples of Chap. 6, we have shown that memory
locations are needed for storing pointers, counters, return addresses, tempo-
rary results, and partial products during multiplication. Having to refer to
memory locations for such applications is time consuming because memory
access is the most time-consuming operatiqn in a comypuies. Y3s more conve-
nient and more efficient to store these intermediate values in processor regis-
ters. When a large number of registers are included in the CPU, it is most
efficient to connect them through a common bus system. The registers commu-
nicate with each other not only for direct data transfers, but also while perform-
ing various microoperations. Hence it is necessary to provide a common unit
that can perform all the arithmetic, logic, and shift microoperations in the
processor.

A bus organization for seven CPU registers is shown in Fig. 8-2. The
output of each register is connected to two multiplexers (MUX) to form the two
buses A and B. The selection lines in each multiplexer select one register or the
input data for the particular bus. The A and B buses form the inputs to a
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Figure 8-2 Register set with common ALU.
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control word

common arithmetic logic unit (ALU). The operation selected in the ALU deter-
mines the arithmetic or logic microoperation that is to be performed. The result
of the microoperation is available for output data and also goes into the inputs
of all the registers. The register that receives the information from the output
bus is selected by a decoder. The decoder activates one of the register load
inputs, thus providing a transfer path between the data in the output bus and
the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information
flow through the registers and ALU by selecting the various components in the
system. For example, to perform the operation

R1<R2+ R3

the control must provide binary selection variables to the following selector
inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.

2. MUX B selector (SELB): to place the content of R3 into bus B.

3. ALU operation selector (OPR): to provide the arithmetic addition
A+ B.

4. Decoder destination selector (SELD): to transfer the content of the
output bus into R1.

The four control selection variables are generated in the control unit and
must be available at the beginning of a clock cycle. The data from the two source
registers propagate through the gates in the multiplexers and the ALU, to the
output bus, and into the inputs of the destination register, all during the clock
cycle interval. Then, when the next clock transition occurs, the binary informa-
tion from the output bus is transferred into R1. To achieve a fast response time,
the ALU is constructed with high-speed circuits. The buses are implemented
with multiplexers or three-state gates, as shown in Sec. 4-3.

Control Word
There are 14 binary selection inputs in the unit, and their combined value
specifies a control word. The 14-bit control word is defined in Fig. 8-2(b). It
consists of four fields. Three fields contain three bits each, and one field has
five bits. The three bits of SELA select a source register for the A input of the
ALU. The three bits of SELB select a register for the B input of the ALU. The
three bits of SELD select a destination register using the decoder and its seven
load outputs. The five bits of OPR select one of the operations in the ALU. The
14-bit control word when applied to the selection inputs specify a particular
microoperation.

The encoding of the register selections is specified in Table 8-1. The 3-bit
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TABLE 8-1 Encoding of Register Selection Fields

Binary
Code SELA  SELB SELD

000 Input Input None

001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 Ré6 R6
111 R7 R7 R7

binary code listed in the first column of the table specifies the binary code for
each of the three fields. The register selected by fields SELA, SELB, and SELD
is the one whose decimal number is equivalent to the binary number in the
code. When SELA or SELB is 000, the corresponding multiplexer selects the
external input data. When SELD = 000, no destination register is selected but
the contents of the output bus are available in the external output.

The ALU provides arithmetic and logic operations. In addition, the CPU
must provide shift operations. The shifter may be placed in the input of the
ALU to provide a preshift capability, or at the output of the ALU to provide
postshifting capability. In some cases, the shift operations are included with
the ALU. An arithmetic logic and shift unit was designed in Sec. 4-7. The
function table for this ALU is listed in Table 4-8. The encoding of the ALU
operations for the CPU is taken from Sec. 4-7 and is specified in Table 8-2. The
OPR field has five bits and each operation is designated with a symbolic name.

TABLE 8-2 Encoding of ALU Operations

OPR

Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A+ B ADD
00101 Subtract A — B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA

11000 Shift left A SHLA
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Examples of Microoperations

A control word of 14 bits is needed to specify a microoperation in the CPU. The
control word for a given microoperation can be derived from the selection
variables. For example, the subtract microoperation given by the statement

R1<R2 - R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for
the destination register, and an ALU operation to subtract A — B. Thus the
control word is specified by the four fields and the corresponding binary value
for each field is obtained from the encoding listed in Tables 8-1 and 8-2. The
binary control word for the subtract microoperation is 010 011 001 00101 and
is obtained as follows:

Field: SELA SELB SELD OPR
Symbol: R2 R3 R1 SUB
Control word: 010 011 001 00101

The control word for this microoperation and a few others are listed in
Table 8-3.

The increment and transfer microoperations do not use the B input of the
ALU. For these cases, the B field is marked with a dash. We assign 000 to any
unused field when formulating the binary control word, although any other
binary number may be used. To place the content of a register into the output
terminals we place the content of the register into the A input of the ALU, but
none of the registers are selected to accept the data. The ALU operation TSFA
places the data from the register, through the ALU, into the output terminals.
The direct transfer from input to output is accomplished with a control word

TABLE 8-3 Examples of Microoperations for the CPU

Symbolic Designation

Microoperation SELA SELB SELD  OPR Control Word

R1<R2-R3 R2 R3 R1 SUB 010 011 001 00101
R4<R4\/ R5 R4 R5 R4 OR 100 101 100 01010
R6<R6 + 1 R6 — R6 INCA 110 000 110 00001
R7<«R1 R1 — R7 TSFA 001 000 111 00000
Output < R2 R2 — None TSFA 010 000 000 00000
Output«<Input  Input — None TSFA 000 000 000 00000
R4 <shl R4 R4 - R4 SHLA 100 000 100 11000

R5<0 R5 R5 R5 XOR 101 101 101 01100
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of all 0’s (making the B field 000). A register can be cleared to 0 with an
exclusive-OR operation. This is because x®@x = 0.

It is apparent from these examples that many other microoperations can
be generated in the CPU. The most efficient way to generate control words with
a large number of bits is to store them in a memory unit. A memory unit that
stores control words is referred to as a control memory. By reading consecutive
control words from memory, it is possible to initiate the desired sequence of
microoperations for the CPU. This type of control is referred to as micropro-
grammed control. A microprogrammed control unit is shown in Fig. 7-8. The
binary control word for the CPU will come from the outputs of the control
memory marked ““micro-ops.”

8-3 Stack Organization

A useful feature that is included in the CPU of most computers is a stack or
last-in, first-out (LIFO) list. A stack is a storage device that stores information
in such a manner that the item stored last is the first item retrieved. The
operation of a stack can be compared to a stack of trays. The last tray placed
on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an
address register that can count only (after an initial value is loaded into it). The
register that holds the address for the stack is called a stack pointer (SP) because
its value always points at the top item in the stack. Contrary to a stack of trays
where the tray itself may be taken out or inserted, the physical registers of a
stack are always available for reading or writing. It is the content of the word
that is inserted or deleted.

The two operations of a stack are the insertion and deletion of items. The
operation of insertion is called push (or push-down) because it can be thought
of as the result of pushing a new item on top. The operation of deletion is called
pop (or pop-up) because it can be thought of as the result of removing one item
so that the stack pops up. However, nothing is pushed or popped in a com-
puter stack. These operations are simulated by incrementing or decrementing
the stack pointer register.

Register Stack

A stack can be placed in a portion of a large memory or it can be organized as
a collection of a finite number of memory words or registers. Figure 8-3 shows
the organization of a 64-word register stack. The stack pointer register SP
contains a binary number whose value is equal to the address of the word that
is currently on top of the stack. Three items are placed in the stack: A, B, and
C, in that order. Item C is on top of the stack so that the content of SP is now
3. To remove the top item, the stack is popped by reading the memory word
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Figure 8-3 Block diagram of a 64-word stack.

at address 3 and decrementing the content of SP. Item B is now on top of the
stack since SP holds address 2. To insert a new item, the stack is pushed by
incrementing SP and writing a word in the next-higher location in the stack.
Note that item C has been read out but not physically removed. This does not
matter because when the stack is pushed, a new item is written in its place.

Ina 64-word stack, the stack pointer contains 6 bits because 2 = 64. Since
SP has only six bits, it cannot exceed a number greater than 63 (111111 in
binary). When 63isincremented by 1, the resultis 0 since 111111 + 1 = 1000000
in binary, but SP can accommodate only the six least significant bits. Similarly,
when 000000 is decremented by 1, the result is 111111. The one-bit register
FULL is set to 1 when the stack is full, and the one-bit register EMTY is set to
1 when the stack is empty of items. DR is the data register that holds the binary
data to be written into or read out of the stack.

Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so
that SP points to the word at address 0 and the stack is marked empty and not
full. If the stack is not full (if FULL = 0), a new item is inserted with a push
operation. The push operation is implemented with the following sequence of
microoperations:

SP<«SP +1 Increment stack pointer
M([SP]«<DR Write item on top of the stack
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If (SP = 0) then (FULL «-1)  Check if stack is full
EMTY «0 Mark the stack not empty

The stack pointer is incremented so that it points to the address of the
next-higher word. A memory write operation inserts the word from DR into
the top of the stack. Note that SP holds the address of the top of the stack and
that M[SP] denotes the memory word specified by the address presently
available in SP. The first item stored in the stack is at address 1. The last item
is stored at address 0. If SP reaches 0, the stack is full of items, so FULL is set
to 1. This condition is reached if the top item prior to the last push was in
location 63 and, after incrementing SP, the last item is stored in location 0. Once
an item is stored in location 0, there are no more empty registers in the stack.
If an item is written in the stack, obviously the stack cannot be empty, so EMTY
is cleared to 0.

A new item is deleted from the stack if the stack is not empty (if
EMTY = 0). The pop operation consists of the following sequence of micro-
operations:

DR «M[SP] Read item from the top of stack
SP«<SP -1 Decrement stack pointer

If (SP = 0) then (EMTY «1) Check if stack is empty

FULL <0 Mark the stack not full

The top item is read from the stack into DR. The stack pointer is then
decremented. If its value reaches zero, the stack is empty, so EMTY is set to
1. This condition is reached if the item read was in location 1. Once this item
is read out, SPis decremented and reaches the value 0, which is the initial value
of SP. Note that if a pop operation reads the item from location 0 and then SP
is decremented, SP changes to 111111, which is equivalent to decimal 63. In
this configuration, the word in address 0 receives the last item in the stack.
Note also that an erroneous operation will result if the stack is pushed when
FULL =1 or popped when EMTY = 1.

Memory Stack

A stack can exist as a stand-alone unit as in Fig. 8-3 or can be implemented in
a random-access memory attached to a CPU. The implementation of a stack
in the CPU is done by assigning a portion of memory to a stack operation and
using a processor register as a stack pointer. Figure 8-4 shows a portion of
computer memory partitioned into three segments: program, data, and stack.
The program counter PC points at the address of the next instruction in the
program. The address register AR points at an array of data. The stack pointer
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Figure B-4 Computer memory with program, data, and stack segments.

SP points at the top of the stack. The three registers are connected to acommon
address bus, and either one can provide an address for memory. PC is used
during the fetch phase to read an instruction. AR is used during the execute
phase to read an operand. SP is used to push or pop items into or from the
stack.

As shown in Fig. 84, the initial value of SP is 4001 and the stack grows
with decreasing addresses. Thus the first item stored in the stack is at address
4000, the second item is stored at address 3999, and the last address that can
be used for the stack is 3000. No provisions are available for stack limit checks.
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We assume that the items in the stack communicate with a data register
DR. A new item is inserted with the push operation as follows:

SP<SP -1
M[SP] < DR

The stack pointer is decremented so that it points at the address of the next
word. A memory write operation inserts the word from DR into the top of the
stack. A new item is deleted with a pop operation as follows:

DR «M[SP]
SP—SP +1

The top item is read from the stack into DR. The stack pointer is then incre-
mented to point at the next item in the stack.

Most computers do not provide hardware to check for stack overflow (full
stack) or underflow (empty stack). The stack limits can be checked by using two
processor registers: one to hold the upper limit (3000 in this case), and the other
to hold the lower limit (4001 in this case). After a push operation, SP is
compared with the upper-limit register and after a pop operation, SP is com-
pared with the lower-limit register.

The two microoperations needed for either the push or pop are (1) an
access to memory through SP, and (2) updating SP. Which of the two micro-
operations is done first and whether SP is updated by incrementing or decre-
menting depends on the organization of the stack. In Fig. 8-4 the stack grows
by decreasing the memory address. The stack may be constructed to grow by
increasing the memory address as in Fig. 8-3. In such a case, SP is incremented
for the push operation and decremented for the pop operation. A stack may
be constructed so that SP points at the next empty location above the top of the
stack. In this case the sequence of microoperations must be interchanged.

A stack pointer is loaded with an initial value. This initial value must be
the bottom address of an assigned stack in memory. Henceforth, SPis automat-
ically decremented or incremented with every push or pop operation. The
advantage of a memory stack is that the CPU can refer to it without having to
specify an address, since the address is always available and automatically
updated in the stack pointer.

Reverse Polish Notation

A stack organization is very effective for evaluating arithmetic expressions. The
common mathematical method of writing arithmetic expressions imposes dif-
ficulties when evaluated by a computer. The common arithmetic expressions
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are written in infix notation, with each operator written between the operands.
Consider the simple arithmetic expression

A*B + C*D

The star (denoting multiplication) is placed between two operands A and B or
C and D. The plus is between the two products. To evaluate this arithmetic
expression it is necessary to compute the product A *B, store this product
while computing C * D, and then sum the two products. From this example we
see that to evaluate arithmetic expressions in infix notation it is necessary to
scan back and forth along the expression to determine the next operation to
be performed.

The Polish mathematician Lukasiewicz showed that arithmetic expres-
sions can be represented in prefix notation. This representation, often referred
to as Polish notation, places the operator before the operands. The postfix
notation, referred to as reverse Polish notation (RPN), places the operator after the
operands. The following examples demonstrate the three representations:

A + B Infix notation
+AB Prefix or Polish notation
AB+ Postfix or reverse Polish notation

The reverse Polish notation is in a form suitable for stack manipulation. The
expression

A*B + C*xD
is written in reverse Polish notation as
AB*CD * +

and is evaluated as follows: Scan the expression from left to right. When an
operator is reached, perform the operation with the two operands found on
the left side of the operator. Remove the two operands and the operator and
replace them by the number obtained from the result of the operation. Con-
tinue to scan the expression and repeat the procedure for every operator
encountered until there are no more operators.

For the expression above we find the operator * after A and B. We
perform the operation A * B and replace A, B, and * by the product to obtain

(A*B)CDx+

where (A * B) is a single quantity obtained from the product. The next operator
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is a * and its previous two operands are C and D, so we perform C * D and
obtain an expression with two operands and one operator:

(A*B)(C*D) +

The next operatoris + and the two operands to be added are the two products,
so we add the two quantities to obtain the result.

The conversion from infix notation to reverse Polish notation must take
into consideration the operational hierarchy adopted for infix notation. This
hierarchy dictates that we first perform all arithmetic inside inner parentheses,
then inside outer parentheses, and do multiplication and division operations
before addition and subtraction operations. Consider the expression

(A + B)*[C*(D + E) + F]

To evaluate the expression we must first perform the arithmetic inside the
parentheses (A + B) and (D + E). Next we must calculate the expression
inside the square brackets. The multiplication of C* (D + E) must be done
prior to the addition of F since multiplication has precedence over addition. The
last operation is the multiplication of the two terms between the parentheses
and brackets. The expression can be converted to reverse Polish notation,
without the use of parentheses, by taking into consideration the operation
hierarchy. The converted expression is

AB + DE + C*F + *

Proceeding from left to right, we first add A and B, then add D and E. At this
point we are left with

(A + B)D + E)C*F + *

where (A + B) and (D + E) are each a single number obtained from the sum.
The two operands for the next * are C and (D+E). These two numbers are
multiplied and the product added to F. The final * causes the multiplication
of the two terms.

Evaluation of Arithmetic Expressions

Reverse Polish notation, combined with a stack arrangement of registers, is the
most efficient way known for evaluating arithmetic expressions. This proce-
dure is employed in some electronic calculators and also in some computers.
The stack is particularly useful for handling long, complex problems involving
chain calculations. It is based on the fact that any arithmetic expression can be
expressed in parentheses-free Polish notation.
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stack operations

The procedure consists of first converting the arithmetic expression into
its equivalent reverse Polish notation. The operands are pushed into the stack
in the order in which they appear. The initiation of an operation depends on
whether we have a calculator or a computer. In a calculator, the operators are
entered through the keyboard. In a computer, they must be initiated by
instructions that contain an operation field (no address field is required). The
following microoperations are executed with the stack when an operation is
entered in a calculator or issued by the control in a computer: (1) the two
topmost operands in the stack are used for the operation, and (2) the stack is
popped and the result of the operation replaces the lower operand. By pushing
the operands into the stack continuously and performing the operations as
defined above, the expression is evaluated in the proper order and the final
result remains on top of the stack.

The following numerical example may clarify this procedure. Consider
the arithmetic expression

(3*4) + (5%6)
In reverse Polish notation, it is expressed as
34 %56 * +

Now consider the stack operations shown in Fig. 8-5. Each box represents one
stack operation and the arrow always points to the top of the stack. Scanning
the expression from left to right, we encounter two operands. First the number
3 is pushed into the stack, then the number 4. The next symbol is the multi-
plication operator *. This causes a multiplication of the two topmost items in
the stack. The stack is then popped and the product is placed on top of the
stack, replacing the two original operands. Next we encounter the two
operands 5 and 6, so they are pushed into the stack. The stack operation that
results from the next * replaces these two numbers by their product. The last
operation causes an arithmetic addition of the two topmost numbers in the
stack to produce the final result of 42.

Scientific calculators that employ an internal stack require that the user
convert the arithmetic expressions into reverse Polish notation. Computers
that use a stack-organized CPU provide a system program to perform the

Figure 8-5 Stack operations to evaluate 3 « 4 + 5 « 6.

3 4 . 5
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conversion for the user. Most compilers, irrespective of their CPU organiza-
tion, convert all arithmetic expressions into Polish notation anyway because
this is the most efficient method for translating arithmetic expressions into
machine language instructions. So in essence, a stack-organized CPU may be
more efficient in some applications than a CPU without a stack.

8-4 Instruction Formats

The physical and logical structure of computers is normally described in refer-
ence manuals provided with the system. Such manuals explain the internal
construction of the CPU, including the processor registers available and their
logical capabilities. They list all hardware-implemented instructions, specify
their binary code format, and provide a precise definition of each instruction.
A computer will usually have a variety of instruction code formats. It is the
function of the control unit within the CPU to interpret each instruction code
and provide the necessary control functions needed to process the instruction.

The format of an instruction is usually depicted in a rectangular box
symbolizing the bits of the instruction as they appear in memory words or in
a control register. The bits of the instruction are divided into groups called
fields. The most common fields found in instruction formats are:

1. An operation code field that specifies the operation to be performed.

2. An address field that designates a memory address or a processor
register.

3. A mode field that specifies the way the operand or the effective address
is determined.

Other special fields are sometimes employed under certain circumstances, as
for example a field that gives the number of shifts in a shift-type instruction.

The operation code field of an instruction is a group of bits that define
various processor operations, such as add, subtract, complement, and shift.
The most common operations available in computer instructions are enumer-
ated and discussed in Sec. 8-6. The bits that define the mode field of an
instruction code specify a variety of alternatives for choosing the operands
from the given address. The various addressing modes that have been formu-
lated for digital computers are presented in Sec. 8-5. In this section we are
concerned with the address field of an instruction format and consider the
effect of including multiple address fields in an instruction.

Operations specified by computer instructions are executed on some data
stored in memory or processor registers. Operands residing in memory are
specified by their memory address. Operands residing in processor registers
are specified with a register address. A register address is a binary number of
k bits that defines one of 2* registers in the CPU. Thus a CPU with 16 processor
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registers R0 through R15 will have a register address field of four bits. The
binary number 0101, for example, will designate register R5.

Computers may have instructions of several different lengths containing
varying number of addresses. The number of address fields in the instruction
format of a computer depends on the internal organization of its registers. Most
computers fall into one of three types of CPU organizations:

1. Single accumulator organization.
2. General register organization.
3. Stack organization.

An example of an accumulator-type organization is the basic computer
presented in Chap. 5. All operations are performed with an implied accumu-
lator register. The instruction format in this type of computer uses one address
field. For example, the instruction that specifies an arithmetic addition is
defined by an assembly language instruction as

ADD X

where X is the address of the operand. The ADD instruction in this case results
in the operation AC <~ AC + M[X]. AC is the accumulator register and M[X]
symbolizes the memory word located at address X.

An example of a general register type of organization was presented in
Fig. 7-1. The instruction format in this type of computer needs three register
address fields. Thus the instruction for an arithmetic addition may be written
in an assembly language as

ADD Rl, R2, R3

to denote the operation R1<«R2 + R3. The number of address fields in the
instruction can be reduced from three to two if the destination register is the
same as one of the source registers. Thus the instruction

ADD R1, Re

would denote the operation R1«~R1 + R2. Only register addresses for R1and
R2 need be specified in this instruction.

Computers with multiple processor registers use the move instruction
with a mnemonic MOV to symbolize a transfer instruction. Thus the instruc-
tion

MOV R1, R2

denotes the transfer R1<R2 (or R2«R1, depending on the particular com-
puter). Thus transfer-type instructions need two address fields to specify the
source and the destination.

General register-type computers employ two or three address fields in
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their instruction format. Each address field may specify a processor register or
a memory word. An instruction symbolized by

ADD R1, X

would specify the operation R1«R1 + M[X]. It has two address fields, one
for register R1 and the other for the memory address X.

The stack-organized CPU was presented in Fig. 8-4. Computers with
stack organization would have PUSH and POP instructions which require an
address field. Thus the instruction

PUSH X

will push the word at address X to the top of the stack. The stack pointer is
updated automatically. Operation-type instructions do not need an address
field in stack-organized computers. This is because the operation is performed
on the two items that are on top of the stack. The instruction

ADD

in a stack computer consists of an operation code only with no address field.
This operation has the effect of popping the two top numbers from the stack,
adding the numbers, and pushing the sum into the stack. There is no need to
specify operands with an address field since all operands are implied to be in
the stack.

Most computers fall into one of the three types of organizations that have
just been described. Some computers combine features from more than one
organizational structure. For example, the Intel 8080 microprocessor has seven
CPU registers, one of which is an accumulator register. As a consequence, the
processor has some of the characteristics of a general register type and some
of the characteristics of an accumulator type. All arithmetic and logic instruc-
tions, as well as the load and store instructions, use the accumulator register,
so these instructions have only one address field. On the other hand, instruc-
tions that transfer data among the seven processor registers have a format that
contains two register address fields. Moreover, the Intel 8080 processor has a
stack pointer and instructions to push and pop from a memory stack. The
processor, however, does not have the zero-address-type instructions which
are characteristic of a stack-organized CPU.

To illustrate the influence of the number of addresses on computer pro-
grams, we will evaluate the arithmetic statement

X=(A+B)*(C+D)
using zero, one, two, or three address instructions. We will use the symbols

ADD, SUB, MUL, and DIV for the four arithmetic operations; MOV for
the transfer-type operation; and LOAD and STORE for transfers to and
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from memory and AC register. We will assume that the operands are in
memory addresses A, B, C, and D, and the result must be stored in memory
at address X.

Three-Address Instructions

Computers with three-address instruction formats can use each address field
to specify either a processor register or a memory operand. The program in
assembly language that evaluates X = (A + B) *(C + D) is shown below, to-
gether with comments that explain the register transfer operation of each
instruction.

ADD R1, R, B RL<M[A] + M[B]
ADD R2,C,D R2<M[C] + M[D]
MUL X, Rl, R2  M[X]<RL*R2

It is assumed that the computer has two processor registers, R1 and R2. The
symbol M[A] denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short
programs when evaluating arithmetic expressions. The disadvantage is that
the binary-coded instructions require too many bits to specify three addresses.
An example of a commercial computer that uses three-address instructions is
the Cyber 170. The instruction formats in the Cyber computer are restricted to
either three register address fields or two register address fields and one
memory address field.

Two-Address Instructions

Two-address instructions are the most common in commercial computers.
Here again each address field can specify either a processor register or a
memory word. The program to evaluate X = (A + B)*(C + D) is as follows:

MOV  R1, A  Rl<M[A]

ADD R1,B  R1«Rl+ M[B]
MOV R2,C  R2<M[C]

ADD R2,D  R2<RE+ M[D]
MUL R1,R2 R1<RLx*R2
MOV X, Rl M[X]<Rl

The MOV instruction moves or transfers the operands to and from memory
and processor registers. The first symbol listed in an instruction is assumed to
be both a source and the destination where the result of the operation is
transferred.
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One-Address Instructions

One-address instructions use an implied accumulator (AC) register for all data
manipulation. For multiplication and division there is a need for a second
register. However, here we will neglect the second register and assume that
the AC contains the result of all operations. The program to evaluate
X=(A+B)*x(C+D)is

LORD A AC<M[A]
ADD B AC«AC + M[B]
STORE T M[T]<AC
LORD C AC<M[C]

ADD D AC<«AC+ M[D]
MUL T AC<RC*M[T]
STORE X M[X]<«AC

All operations are done between the AC register and a memory operand.
T is the address of a temporary memory location required for storing the
intermediate result.

Zero-Address Instructions

A stack-organized computer does not use an address field for the instructions
ADD and MUL. The PUSH and POP instructions, however, need an address
field to specify the operand that communicates with the stack. The following
program shows how X = (A + B)*(C + D) will be written for a stack-
organized computer. (TOS stands for top of stack.)

PUSH A TOS<A

PUSH B TOS<B

ADD TOS « (A + B)

PUSH C TOS<C

PUSH D TOS<D

ADD TOS« (C + D)

MUL TOS« (C+D)*(A+B)
POP X  M[X]<TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to
convert the expression into reverse Polish notation. The name "’zero-address”
is given to this type of computer because of the absence of an address field in
the computational instructions.

RISC Instructions

The advantages of a reduced instruction set computer (RISC) architecture are
explained in Sec. 8-8. The instruction set of a typical RISC processor is restricted
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to the use of load and store instructions when communicating between mem-
ory and CPU. All other instructions are executed within the registers of the
CPU without referring to memory. A program for a RISC-type CPU consists
of LOAD and STORE instructions that have one memory and one register
address, and computational-type instructions that have three addresses with
all three specifying processor registers. The following is a program to evaluate
X=(A+B)x(C+D)

LOAD R1, A RL<«<M[A]
LOAD R2, B R2 <« M[B]
LOAD R3, C RI<M([C]
LOAD R4, D R4 < M([D]
ADD Rl, R, R2  RL<Rl +R2
ADD R3, R3, R2 R3I«R3I +R4
MUL Rl, Rl, R3 Rl <«R1*R3
STORE X, Rl M[X] <R1

The load instructions transfer the operands from memory to CPU registers.
The add and multiply operations are executed with data in the registers
without accessing memory. The result of the computations is then stored in
memory with a store instruction.

8-5 Addressing Modes

The operation field of an instruction specifies the operation to be performed.
This operation must be executed on some data stored in computer registers or
memory words. The way the operands are chosen during program execution
is dependent on the addressing mode of the instruction. The addressing mode
specifies a rule for interpreting or modifying the address field of the instruction
before the operand is actually referenced. Computers use addressing mode
techniques for the purpose of accommodating one or both of the following
provisions:

1. To give programming versatility to the user by providing such facilities
as pointers to memory, counters for loop control, indexing of data, and
program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

The availability of the addressing modes gives the experienced assembly
language programmer flexibility for writing programs that are more efficient
with respect to the number of instructions and execution time.

To understand the various addressing modes to be presented in this
section, it is imperative that we understand the basic operation cycle of the
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computer. The control unit of a computer is designed to go through an instruc-
tion cycle that is divided into three major phases:

1. Fetch the instruction from memory.
2. Decode the instruction.
3. Execute the instruction.

There is one register in the computer called the program counter or PC that
keeps track of the instructions in the program stored in memory. PC holds the
address of the instruction to be executed next and is incremented each time an
instruction is fetched from memory. The decoding done in step 2 determines
the operation to be performed, the addressing mode of the instruction, and the
location of the operands. The computer then executes the instruction and
returns to step 1 to fetch the next instruction in sequence.

In some computers the addressing mode of the instruction is specified
with a distinct binary code, just like the operation code is specified. Other
computers use a single binary code that designates both the operation and the
mode of the instruction. Instructions may be defined with a variety of address-
ing modes, and sometimes, two or more addressing modes are combined in
one instruction.

An example of an instruction format with a distinct addressing mode field
is shown in Fig. 8-6. The operation code specifies the operation to be per-
formed. The mode field is used to locate the operands needed for the opera-
tion. There may or may not be an address field in the instruction. If there is
an address field, it may designate a memory address or a processor register.
Moreover, as discussed in the preceding section, the instruction may have
more than one address field, and each address field may be associated with
its own particular addressing mode.

Although most addressing modes modify the address field of the instruc-
tion, there are two modes that need no address field at all. These are the
implied and immediate modes.

Implied Mode: In this mode the operands are specified implicitly in the
definition of the instruction. For example, the instruction "’complement accu-
mulator” is an implied-mode instruction because the operand in the accumu-
lator register is implied in the definition of the instruction. In fact, all register
reference instructions that use an accumulator are implied-mode instructions.

Figure 8-6 Instruction format with mode field.

Opcode Mode Address j
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effective address

Zero-address instructions in a stack-organized computer are implied-mode
instructions since the operands are implied to be on top of the stack.

Immediate Mode: In this mode the operand is specified in the instruction
itself. In other words, an immediate-mode instruction has an operand field
rather than an address field. The operand field contains the actual operand to
be used in conjunction with the operation specified in the instruction. Imme-
diate-mode instructions are useful for initializing registers to a constant value.

It was mentioned previously that the address field of an instruction may
specify either a memory word or a processor register. When the address field
specifies a processor register, the instruction is said to be in the register mode.

Register Mode: In this mode the operands are in registers that reside within
the CPU. The particular register is selected from a register field in the instruc-
tion. A k-bit field can specify any one of 2" registers.

Register Indirect Mode: In this mode the instruction specifies a register in the
CPU whose contents give the address of the operand in memory. In other
words, the selected register contains the address of the operand rather than
the operand itself. Before using a register indirect mode instruction, the pro-
grammer must ensure that the memory address of the operand is placed in the
processor register with a previous instruction. A reference to the register is
then equivalent to specifying a memory address. The advantage of a register
indirect mode instruction is that the address field of the instruction uses fewer
bits to select a register than would have been required to specify a memory
address directly.

Autoincrement or Autodecrement Mode: This is similar to the register in-
direct mode except that the register is incremented or decremented after (or
before) its value is used to access memory. When the address stored in the
register refers to a table of data in memory, it is necessary to increment or
decrement the register after every access to the table. This can be achieved by
using the increment or decrement instruction. However, because it is such a
common requirement, some computers incorporate a special mode that auto-
matically increments or decrements the content of the register after data access.

The address field of an instruction is used by the control unit in the CPU
to obtain the operand from memory. Sometimes the value given in the address
field is the address of the operand, but sometimes it is just an address from
which the address of the operand is calculated. To differentiate among the
various addressing modes it is necessary to distinguish between the address
part of the instruction and the effective address used by the control when
executing the instruction. The effective address is defined to be the memory
address obtained from the computation dictated by the given addressing
mode. The effective address is the address of the operand in a computational-
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type instruction. It is the address where control branches in response to a
branch-type instruction. We have already defined two addressing modes in
Chap. 5. They are summarized here for reference.

Direct Address Mode: In this mode the effective address is equal to the
address part of the instruction. The operand resides in memory and its address
is given directly by the address field of the instruction. In a branch-type
instruction the address field specifies the actual branch address.

Indirect Address Mode: In this mode the address field of the instruction
gives the address where the effective address is stored in memory. Control
fetches the instruction from memory and uses its address part to access mem-
ory again to read the effective address. The indirect address mode is also
explained in Sec. 5-1 in conjunction with Fig. 5-2.

A few addressing modes require that the address field of the instruction
be added to the content of a specific register in the CPU. The effective address
in these modes is obtained from the following computation:

effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an
index register, or a base register. In either case we have a different addressing
mode which is used for a different application.

Relative Address Mode: In this mode the content of the program counter is
added to the address part of the instruction in order to obtain the effective
address. The address part of the instruction is usually a signed number (in 2’s
complement representation) which can be either positive or negative. When
this number is added to the content of the program counter, the result pro-
duces an effective address whose position in memory is relative to the address
of the next instruction. To clarify with an example, assume that the program
counter contains the number 825 and the address part of the instruction
contains the number 24. The instruction at location 825 is read from memory
during the fetch phase and the program counter is then incremented by one
to 826. The effective address computation for the relative address mode is
826 + 24 = 850. This is 24 memory locations forward from the address of the
next instruction. Relative addressing is often used with branch-type instruc-
tions when the branch address is in the area surrounding the instruction word
itself. It results in a shorter address field in the instruction format since the
relative address can be specified with a smaller number of bits compared to the
number of bits required to designate the entire memory address.

Indexed Addressing Mode: In this mode the content of an index register is
added to the address part of the instruction to obtain the effective address. The
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index register is a special CPU register that contains an index value. The
address field of the instruction defines the beginning address of a data array
in memory. Each operand in the array is stored in memory relative to the
beginning address. The distance between the beginning address and the
address of the operand is the index value stored in the index register. Any
operand in the array can be accessed with the same instruction provided that
the index register contains the correct index value. The index register can be
incremented to facilitate access to consecutive operands. Note that if an index-
type instruction does not include an address field in its format, the instruction
converts to the register indirect mode of operation.

Some computers dedicate one CPU register to function solely as an index
register. This register is involved implicitly when the index-mode instruction
is used. In computers with many processor registers, any one of the CPU
registers can contain the index number. In such a case the register must be
specified explicitly in a register field within the instruction format.

Base Register Addressing Mode: In this mode the content of a base register
is added to the address part of the instruction to obtain the effective address.
This is similar to the indexed addressing mode except that the register is now
called a base register instead of an index register. The difference between the
two modes is in the way they are used rather than in the way that they are
computed. An index register is assumed to hold an index number that is
relative to the address part of the instruction. A base register is assumed to hold
a base address and the address field of the instruction gives a displacement
relative to this base address. The base register addressing mode is used in
computers to facilitate the relocation of programs in memory. When programs
and data are moved from one segment of memory to another, as required in
multiprogramming systems, the address values of instructions must reflect
this change of position. With a base register, the displacement values of
instructions do not have to change. Only the value of the base register requires
updating to reflect the beginning of a new memory segment.

Numerical Example

To show the differences between the various modes, we will show the effect
of the addressing modes on the instruction defined in Fig. 8-7. The two-word
instruction at address 200 and 201 is a “load to AC” instruction with an address
field equal to 500. The first word of the instruction specifies the operation code
and mode, and the second word specifies the address part. PC has the value
200 for fetching this instruction. The content of processor register R1 is 400,
and the content of an index register XR is 100. AC receives the operand after
the instruction is executed. The figure lists a few pertinent addresses and
shows the memory content at each of these addresses.
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Address Memory

PC=200 200 LoadtoAC | Mode

201 Address = 500
R1=400 202 Next instruction
XR =100

399 450

P —

500 800

600 900

702 325

800 300

Figure 8-7 Numerical example for addressing modes.

The mode field of the instruction can specify any one of a number of
modes. For each possible mode we calculate the effective address and the
operand that must be loaded into AC. In the direct address mode the effective
address is the address part of the instruction 500 and the operand to be loaded
into AC is 800. In the immediate mode the second word of the instruction is
taken as the operand rather than an address, so 500 is loaded into AC. (The
effective address in this case is 201.) In the indirect mode the effective address
is stored in memory at address 500. Therefore, the effective address is 800 and
the operand is 300. In the relative mode the effective address is 500 + 202 =
702 and the operand is 325. (Note that the value in PC after the fetch phase and
during the execute phase is 202.) In the index mode the effective address is
XR + 500 = 100 + 500 = 600 and the operand is 900. In the register mode the
operand is in R1 and 400 is loaded into AC. (There is no effective address in
this case.) In the register indirect mode the effective address is 400, equal to
the content of R1 and the operand loaded into AC is 700. The autoincrement
mode is the same as the register indirect mode except that R1 is incremented
to 401 after the execution of the instruction. The autodecrement mode decre-
ments R1 to 399 prior to the execution of the instruction. The operand loaded
into AC is now 450. Table 8-4 lists the values of the effective address and the
operand loaded into AC for the nine addressing modes.
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TABLE 8-4 Tabular List of Numerical Example

Addressing Effective  Content
Mode Address of AC
Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register —_ 400
Register indirect 400 700
Autoincrement 400 700
Autodecrement 399 450

8-6 Data Transfer and Manipulation

Computers provide an extensive set of instructions to give the user the flexi-
bility to carry out various computational tasks. The instruction set of different
computers differ from each other mostly in the way the operands are deter-
mined from the address and mode fields. The actual operations available in the
instruction set are not very different from one computer to another. It so
happens that the binary code assignments in the operation code field is differ-
ent in different computers, even for the same operation. It may also happen
that the symbolic name given to instructions in the assembly language notation
is different in different computers, even for the same instruction. Nevertheless,
there is a set of basic operations that most, if not all, computers include in their
instruction repertoire. The basic set of operations available in a typical com-
puter is the subject covered in this and the next section.
Most computer instructions can be classified into three categories:

1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

Data transfer instructions cause transfer of data from one location to another
without changing the binary information content. Data manipulation instruc-
tions are those that perform arithmetic, logic, and shift operations. Program
control instructions provide decision-making capabilities and change the path
taken by the program when executed in the computer. The instruction set of
a particular computer determines the register transfer operations and control
decisions that are available to the user.
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Data Transfer Instructions

Data transfer instructions move data from one place in the computer to another
without changing the data content. The most common transfers are between
memory and processor registers, between processor registers and input or
output, and between the processor registers themselves. Table 8-5 gives a list
of eight data transfer instructions used in many computers. Accompanying
each instruction is a mnemonic symbol. It must be realized that different
computers use different mnemonics for the same instruction name.

The load instruction has been used mostly to designate a transfer from
memory to a processor register, usually an accumulator. The store instruction
designates a transfer from a processor register into memory. The move instruc-
tion has been used in computers with multiple CPU registers to designate a
transfer from one register to another. It has also been used for data transfers
between CPU registers and memory or between two memory words. The
exchange instruction swaps information between two registers or a register and
amemory word. The input and output instructions transfer data among proces-
sor registers and input or output terminals. The push and pop instructions
transfer data between processor registers and a memory stack.

It must be realized that the instructions listed in Table 8-5, as well as in
subsequent tables in this section, are often associated with a variety of address-
ing modes. Some assembly language conventions modify the mnemonic sym-
bol to differentiate between the different addressing modes. For example, the
mnemonic for load immediate becomes LDI. Other assembly language conven-
tions use a special character to designate the addressing mode. For example,
the immediate mode is recognized from a pound sign # placed before the
operand. In any case, the important thing is to realize that each instruction can
occur with a variety of addressing modes. As an example, consider the load to
accumulator instruction when used with eight different addressing modes.

TABLE 8-5 Typical Data Transfer

Instructions
Name Mnemonic

Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output ouT
Push PUSH

Pop POP




268 CHAPTER EIGHT Central Processing Unit

TABLE 8-6 Eight Addressing Modes for the Load Instruction

Assembly

Mode Convention Register Transfer
Direct address LD ADR AC «— M[ADR]
Indirect address LD @ADR AC «— M[M[ADR]]
Relative address LD $ADR AC — M[PC + ADR]
Immediate operand LD #NBR AC — NBR
Index addressing LD ADR(X) AC «— M[ADR + XR]
Register LD RI AC — R1
Register indirect LD (R1) AC — M[R1]
Autoincrement LD (RD)+ AC «— M[RI), R1 — R1 +1

Table 8-6 shows the recommended assembly language convention and the
actual transfer accomplished in each case. ADR stands for an address, NBR is
anumber or operand, X is an index register, R1 is a processor register, and AC
is the accumulator register. The @ character symbolizes an indirect address.
The $ character before an address makes the address relative to the program
counter PC. The # character precedes the operand in an immediate-mode
instruction. An indexed mode instruction is recognized by a register that is
placed in parentheses after the symbolic address. The register mode is symbol-
ized by giving the name of a processor register. In the register indirect mode,
the name of the register that holds the memory address is enclosed in paren-
theses. The autoincrement mode is distinguished from the register indirect
mode by placing a plus after the parenthesized register. The autodecrement
mode would use a minus instead. To be able to write assembly language
programs for a computer, it is necessary to know the type of instructions
available and also to be familiar with the addressing modes used in the partic-
ular computer.

Data Manipulation Instructions

Data manipulation instructions perform operations on data and provide the
computational capabilities for the computer. The data manipulation instruc-
tions in a typical computer are usually divided into three basic types:

1. Arithmetic instructions
2. Logical and bit manipulation instructions
3. Shift instructions

A list of data manipulation instructions will look very much like the list of
microoperations given in Chap. 4. It must be realized, however, that each
instruction when executed in the computer must go through the fetch phase
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to read its binary code value from memory. The operands must also be brought
into processor registers according to the rules of the instruction addressing
mode. The last step is to execute the instruction in the processor. This last step
is implemented by means of microoperations as explained in Chap. 4 or
through an ALU and shifter as shown in Fig. 8-2. Some of the arithmetic
instructions need special circuits for their implementation.

Arithmetic Instructions

The four basic arithmetic operations are addition, subtraction, multiplication,
and division. Most computers provide instructions for all four operations.
Some small computers have only addition and possibly subtraction instruc-
tions. The multiplication and division must then be generated by means of
software subroutines. The four basic arithmetic operations are sufficient for
formulating solutions to scientific problems when expressed in terms of nu-
merical analysis methods.

Alist of typical arithmetic instructions is given in Table 8-7. The increment
instruction adds 1 to the value stored in a register or memory word. One
common characteristic of the increment operations when executed in processor
registers is that a binary number of all 1’s when incremented produces a result
of all 0s. The decrement instruction subtracts 1 from a value stored in a register
or memory word. A number with all 0’s, when decremented, produces a
number with all 1's.

The add, subtract, multiply, and divide instructions may be available for
different types of data. The data type assumed to be in processor registers
during the execution of these arithmetic operations is included in the definition
of the operation code. An arithmetic instruction may specify fixed-point or
floating-point data, binary or decimal data, single-precision or double-preci-
sion data. The various data types are presented in Chap. 3.

It is not uncommon to find computers with three or more add instruc-

TABLE 8-7 Typical Arithmetic Instructions

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB

Negate (2’s complement) NEG
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clear selected bits

tions: one for binary integers, one for floating-point operands, and one for
decimal operands. The mnemonics for three add instructions that specify
different data types are shown below.

ADDI Rdd two binary integer numbers
ADDF Bdd two floating-point numbers
ADDD Add two decimal numbers in BCD

Algorithms for integer, floating-point, and decimal arithmetic operations are
developed in Chap. 10.

The number of bits in any register is of finite length and therefore the
results of arithmetic operations are of finite precision. Some computers provide
hardware double-precision operations where the length of each operand is
taken to be the length of two memory words. Most small computers provide
special instructions to facilitate double-precision arithmetic. A special carry
flip-flop is used to store the carry from an operation. The instruction “add with
carry”” performs the addition on two operands plus the value of the carry from
the previous computation. Similarly, the “’subtract with borrow” instruction
subtracts two words and a borrow which may have resulted from a previous
subtract operation. The negate instruction forms the 2’s complement of a
number, effectively reversing the sign of an integer when represented in the
signed-2’s complement form.

Logical and Bit Manipulation Instructions
Logical instructions perform binary operations on strings of bits stored in
registers. They are useful for manipulating individual bits or a group of bits
that represent binary-coded information. The logical instructions consider
each bit of the operand separately and treat it as a Boolean variable. By proper
application of the logical instructions it is possible to change bit values, to clear
a group of bits, or to insert new bit values into operands stored in registers or
memory words.

Some typical logical and bit manipulation instructions are listed in Table
8-8. The clear instruction causes the specified operand to be replaced by 0's.
The complement instruction produces the 1’s complement by inverting all the
bits of the operand. The AND, OR, and XOR instructions produce the corre-
sponding logical operations on individual bits of the operands. Although they
perform Boolean operations, when used in computer instructions, the logical
instructions should be considered as performing bit manipulation operations.
There are three bit manipulation operations possible: a selected bit can be
cleared to 0, or can be set to 1, or can be complemented. The three logical
instructions are usually applied to do just that.

The AND instruction is used to clear a bit or a selected group of bits of
an operand. For any Boolean variable x, the relationships xb0 = 0and xb1 = x
dictate that a binary variable ANDed with a 0 produces a 0; but the variable
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TABLE 8-8 Typical Logical and Bit
Manipulation Instructions

Name Mnemonic
Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

does not change in value when ANDed with a 1. Therefore, the AND instruc-
tion can be used to clear bits of an operand selectively by ANDing the operand
with another operand that has 0’s in the bit positions that must be cleared. The
AND instruction is also called a mask because it masks or inserts 0’s in a selected
portion of an operand.

The OR instruction is used to set a bit or a selected group of bits of an
operand. Forany Boolean variable x, the relationshipsx + 1 = landx + 0 = x
dictate that a binary variable ORed with a 1 produces a 1; but the variable does
not change when ORed with a 0. Therefore, the OR instruction can be used
to selectively set bits of an operand by ORing it with another operand with 1's
in the bit positions that must be set to 1.

Similarly, the XOR instruction is used to selectively complement bits of
an operand. This is because of the Boolean relationships x@®1 = x’ and
x@0 = x. Thus a binary variable is complemented when XORed with a 1 but
does not change in value when XORed with a 0. Numerical examples showing
the three logic operations are given in Sec. 4-5.

A few other bit manipulation instructions are included in Table 8-8.
Individual bits such as a carry can be cleared, set, or complemented with
appropriate instructions. Another example is a flip-flop that controls the inter-
rupt facility and is either enabled or disabled by means of bit manipulation
instructions.

Shift Instructions

Instructions to shift the content of an operand are quite useful and are often
provided in several variations. Shifts are operations in which the bits of a word
are moved to the left or right. The bit shifted in at the end of the word
determines the type of shift used. Shift instructions may specify either logical
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shifts, arithmetic shifts, or rotate-type operations. In either case the shift may
be to the right or to the left.

Table 8-9 lists four types of shift instructions. The logical shift inserts 0
to the end bit position. The end position is the leftmost bit for shift right and
the rightmost bit position for the shift left. Arithmetic shifts usually con-
form with the rules for signed-2’s complement numbers. These rules are given
in Sec. 4-6. The arithmetic shift-right instruction must preserve the sign bit in
the leftmost position. The sign bit is shifted to the right together with the rest
of the number, but the sign bit itself remains unchanged. This is a shift-right
operation with the end bit remaining the same. The arithmetic shift-left in-
struction inserts 0 to the end position and is identical to the logical shift-left
instruction. For this reason many computers do not provide a distinct arith-
metic shift-left instruction when the logical shift-left instruction is already
available.

The rotate instructions produce a circular shift. Bits shifted out at one end
of the word are not lost as in a logical shift but are circulated back into the other
end. The rotate through carry instruction treats a carry bit as an extension of
the register whose word is being rotated. Thus a rotate-left through carry
instruction transfers the carry bit into the rightmost bit position of the register,
transfers the leftmost bit position into the carry, and at the same time, shifts
the entire register to the left.

Some computers have a multiple-field format for the shift instructions.
One field contains the operation code and the others specify the type of shift
and the number of times that an operand is to be shifted. A possible instruction
code format of a shift instruction may include five fields as follows:

opP REG TYPE RL COUNT

Here OP is the operation code field; REG is a register address that specifies the
location of the operand; TYPE is a 2-bit field specifying the four different types
of shifts; RL is a 1-bit field specifying a shift right or left; and COUNT is a k-bit
field specifying up to 2" — 1 shifts. With such a format, it is possible to specify
the type of shift, the direction, and the number of shifts, all in one instruction.

TABLE 8-9 Typical Shift Instructions

Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL

Rotate right through carry RORC
Rotate left through carry ROLC
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8-7 Program Control

Instructions are always stored in successive memory locations. When proc-
essed in the CPU, the instructions are fetched from consecutive memory
locations and executed. Each time an instruction is fetched from memory, the
program counter is incremented so that it contains the address of the next
instruction in sequence. After the execution of a data transfer or data manip-
ulation instruction, control returns to the fetch cycle with the program counter
containing the address of the instruction next in sequence. On the other hand,
a program control type of instruction, when executed, may change the address
value in the program counter and cause the flow of control to be altered. In
other words, program control instructions specify conditions for altering the
content of the program counter, while data transfer and manipulation in-
structions specify conditions for data-processing operations. The change in
value of the program counter as a result of the execution of a program con-
trol instruction causes a break in the sequence of instruction execution. This
is an important feature in digital computers, as it provides control over the flow
of program execution and a capability for branching to different program
segments.

Some typical program control instructions are listed in Table 8-10. The
branch and jump instructions are used interchangeably to mean the same
thing, but sometimes they are used to denote different addressing modes. The
branch is usually a one-address instruction. It is written in assembly language
as BR ADR, where ADR is a symbolic name for an address. When executed,
the branch instruction causes a transfer of the value of ADR into the program
counter. Since the program counter contains the address of the instruction to
be executed, the next instruction will come from location ADR.

Branch and jump instructions may be conditional or unconditional. An
unconditional branch instruction causes a branch to the specified address with-
out any conditions. The conditional branch instruction specifies a condition
such as branch if positive or branch if zero. If the condition is met, the program
counter is loaded with the branch address and the next instruction is taken

TABLE 8-10 Typical Program Control Instructions

Name Mnemonic
Branch BR
Jump IMP
Skip SKP
Call CALL
Return RET

Compare (by subtraction) CMP
Test (by ANDing) TST
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from this address. If the condition is not met, the program counter is not
changed and the next instruction is taken from the next location in sequence.

The skip instruction does not need an address field and is therefore a
zero-address instruction. A conditional skip instruction will skip the next
instruction if the condition is met. This is accomplished by incrementing the
program counter during the execute phase in addition to its being incremented
during the fetch phase. If the condition is not met, control proceeds with the
next instruction in sequence where the programmer inserts an unconditional
branch instruction. Thus a skip-branch pair of instructions causes a branch if
the condition is not met, while a single conditional branch instruction causes
a branch if the condition is met.

The call and return instructions are used in conjunction with subroutines.
Their performance and implementation are discussed later in this section. The
compare and test instructions do not change the program sequence directly.
They are listed in Table 8-10 because of their application in setting conditions
for subsequent conditional branch instructions. The compare instruction per-
forms a subtraction between two operands, but the result of the operation is
not retained. However, certain status bit conditions are set as a result of the
operation. Similarly, the test instruction performs the logical AND of two
operands and updates certain status bits without retaining the result or chang-
ing the operands. The status bits of interest are the carry bit, the sign bit, a zero
indication, and an overflow condition. The generation of these status bits will
be discussed first and then we will show how they are used in conditional
branch instructions.

Status Bit Conditions

It is sometimes convenient to supplement the ALU circuit in the CPU with a
status register where status bit conditions can be stored for further analysis.
Status bits are also called condition-code bits or flag bits. Figure 8-8 shows the
block diagram of an 8-bit ALU with a 4-bit status register. The four status bits
are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an
operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry Cy is 1. It is cleared to 0 if the carry
is 0.

2. Bit S (sign) is set to 1 if the highest-order bit F, is 1. It is set to 0 if the
bit is 0.

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0's. It is cleared
to 0 otherwise. In other words, Z = 1 if the output is zero and Z = 0
if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is
equal to 1, and cleared to 0 otherwise. This is the condition for an
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Figure 8-8 Status register bits.

overflow when negative numbers are in 2's complement (see Sec. 3-3).
For the 8-bit ALU, V = 1 if the output is greater than +127 or less than
—128.

The status bits can be checked after an ALU operation to determine
certain relationships that exist between the values of A and B. If bit V is set after
the addition of two signed numbers, it indicates an overflow condition. If Z is
set after an exclusive-OR operation, it indicates that A = B. This is so because
x®x = 0, and the exclusive-OR of two equal operands gives an all-0’s result
which sets the Z bit. A single bit in A can be checked to determine if it is 0 or
1 by masking all bits except the bit in question and then checking the Z status
bit. For example, let A = 101x1100, where x is the bit to be checked. The AND
operation of A with B = 00010000 produces a result 000x0000. If x = 0, the Z
status bit is set, butif x = 1, the Z bit is cleared since the result is not zero. The
AND operation can be generated with the TEST instruction listed in Table 8-10
if the original content of A must be preserved.

Conditional Branch Instructions

Table 8-11 gives a list of the most common branch instructions. Each mnemonic
is constructed with the letter B (for branch) and an abbreviation of the condition
name. When the opposite condition state is used, the letter N (for no) is
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TABLE 8-11 Conditional Branch Instructions

Mnemonic Branch condition Tested condition
BZ Branch if zero Z=1
BNZ Branch if not zero Z=0
BC Branch if carry C=1
BNC Branch if no carry C=0
BP Branch if plus S$=0
BM Branch if minus S=1
BV Branch if overflow V=1
BNV Branch if no overflow V=0

Unsigned compare conditions (4 — B)
BHI Branch if higher A>B
BHE Branch if higher or equal A>B
BLO Branch if lower A<B
BLOE Branch if lower or equal A<B
BE Branch if equal =B
BNE Branch if not equal A#*B

Signed compare conditions (4 — B)
BGT Branch if greater than A>B
BGE Branch if greater or equal A>B
BLT Branch if less than A<B
BLE Branch if less or equal A<B
BE Branch if equal A=B
BNE Branch if not equal A#+B

inserted to define the 0 state. Thus BC is Branch on Carry, and BNC is Branch
on No Carry. If the stated condition is true, program control is transferred to
the address specified by the instruction. If not, control continues with the
instruction that follows. The conditional instructions can be associated also
with the jump, skip, call, or return type of program control instructions.

The zero status bit is used for testing if the result of an ALU operation
is equal to zero or not. The carry bit is used to check if there is a carry out of
the most significant bit position of the ALU. It is also used in conjunction with
the rotate instructions to check the bit shifted from the end position of a register
into the carry position. The sign bit reflects the state of the most significant bit
of the output from the ALU. S = 0 denotesa positive signand S = 1, anegative
sign. Therefore, a branch on plus checks for a sign bit of 0 and a branch on
minus checks for a sign bit of 1. It must be realized, however, that these two
conditional branch instructions can be used to check the value of the most
significant bit whether it represents a sign or not. The overflow bit is used in
conjunction with arithmetic operations done on signed numbers in 2’s comple-
ment representation.
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As stated previously, the compare instruction performs a subtraction of
two operands, say A — B. The result of the operation is not transferred into
a destination register, but the status bits are affected. The status register
provides information about the relative magnitude of A and B. Some comput-
ers provide conditional branch instructions that can be applied right after the
execution of a compare instruction. The specific conditions to be tested depend
on whether the two numbers A and B are considered to be unsigned or signed
numbers. Table 8-11 gives a list of such conditional branch instructions. Note
that we use the words higher and lower to denote the relations between
unsigned numbers, and greater and less than for signed numbers. The relative
magnitude shown under the tested condition column in the table seems to be
the same for unsigned and signed numbers. However, this is not the case since
each must be considered separately as explained in the following numerical
example.

Consider an 8-bit ALU as shown in Fig. 8-8. The largest unsigned number
that can be accommodated in 8 bits is 255. The range of signed numbers is
between +127 and —128. The subtraction of two numbers is the same whether
they are unsigned or in signed-2’s complement representation (see Chap. 3).
Let A = 11110000 and B = 00010100. To perform A — B, the ALU takes the 2's
complement of B and adds it to A.

A: 11110000
B + 1: +11101100
A - B: 11011100 Cc=1 S=1 V=0 Z=0

The compare instruction updates the status bits as shown. C = 1 because there
is a carry out of the last stage. S = 1 because the leftmost bitis 1. V = 0 because
the last two carries are both equal to 1, and Z = Obecause the result is not equal
to 0.

If we assume unsigned numbers, the decimal equivalent of A is 240 and
that of B is 20. The cubtraction in decimal is 240 — 20 = 220. The binary result
11011100 is indeed the equivalent of decimal 220. Since 240 > 20, we have that
A >Band A + B. These two relations can also be derived from the fact that
status bit C is equal to 1 and bit Z is equal to 0. The instructions that will cause
abranch after this comparison are BHI (branch if higher), BHE (branch if higher
or equal), and BNE (branch if not equal).

If we assume signed numbers, the decimal equivalent of A is —16. This
is because the sign of A is negative and 11110000 is the 2’s complement of
00010000, which is the decimal equivalent of +16. The decimal equivalent of
Bis +20. The subtraction in decimal is (—16) — (+20) = —36. The binary result
11011100 (the 2’s complement of 00100100) is indeed the equivalent of decimal
—36. Since (—16) < (+20) we havethat A < Band A # B. These two relations
can also be derived from the fact that status bits S = 1 (negative), V = 0 (no
overflow), and Z = 0 (not zero). The instructions that will cause a branch after
this comparison are BLT (branch if less than), BLE (branch if less or equal), and
BNE (branch if not equal).
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It should be noted that the instruction BNE and BNZ (branch if not zero)
are identical. Similarly, the two instructions BE (branch if equal) and BZ
(branch if zero) are also identical. Each is repeated three times in Table 8-11 for
the purpose of clarity and completeness.

It should be obvious from the example that the relative magnitude of
two unsigned numbers can be determined (after a compare instruction) from
the values of status bits C and Z (see Prob. 8-26). The relative magnitude of two
signed numbers can be determined from the values of S, V, and Z (see
Prob. 8-27).

Some computers consider the C bit to be a borrow bit after a subtraction
operation A — B. A borrow does notoccurif A = B, buta bit must be borrowed
from the next most significant position if A < B. The condition for a borrow
is the complement of the carry obtained when the subtraction is done by taking
the 2's complement of B. For this reason, a processor that considers the C bit
to be a borrow after a subtraction will complement the C bit after adding the
2’'s complement of the subtrahend and denote this bit a borrow.

Subroutine Call and Return

A subroutine is a self-contained sequence of instructions that performs a given
computational task. During the execution of a program, a subroutine may be
called to perform its function many times at various points in the main pro-
gram. Each time a subroutine is called, a branch is executed to the beginning
of the subroutine to start executing its set of instructions. After the subroutine
has been executed, a branch is made back to the main program.

The instruction that transfers program control to a subroutine is known
by different names. The most common names used are call subroutine, jump to
subroutine, branch to subroutine, or branch and save address. A call subroutine
instruction consists of an operation code together with an address that specifies
the beginning of the subroutine. The instruction is executed by performing two
operations: (1) the address of the next instruction available in the program
counter (the return address) is stored in a temporary location so the subroutine
knows where to return, and (2) control is transferred to the beginning of the
subroutine. The last instruction of every subroutine, commonly called return
from subroutine, transfers the return address from the temporary location into
the program counter. This results in a transfer of program control to the
instruction whose address was originally stored in the temporary location.

Different computers use a different temporary location for storing the
return address. Some store the return address in the first memory location of
the subroutine, some store it in a fixed location in memory, some store it in
a processor register, and some store it in a memory stack. The most efficient
way is to store the return address in a memory stack. The advantage of using
a stack for the return address is that when a succession of subroutines is called,
the sequential return addresses can be pushed into the stack. The return from
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subroutine instruction causes the stack to pop and the contents of the top of
the stack are transferred to the program counter. In this way, the return is
always to the program that last called a subroutine. A subroutine call is
implemented with the following microoperations:

SP«SP -1 Decrement stack pointer
M|[SP] «PC Push content of PC onto the stack

PC < effective address Transfer control to the subroutine

If another subroutine is called by the current subroutine, the new return
address is pushed into the stack, and so on. The instruction that returns from
the last subroutine is implemented by the microoperations:

PC «M|[SP] Pop stack and transfer to PC
SP<«SP +1 Increment stack pointer

By using a subroutine stack, all return addresses are automatically stored
by the hardware in one unit. The programmer does not have to be concerned
or remember where the return address was stored.

A recursive subroutine is a subroutine that calls itself. If only one register
or memory location is used to store the return address, and the recursive
subroutine calls itself, it destroys the previous return address. This is undesir-
able because vital information is destroyed. This problem can be solved if
different storage locations are employed for each use of the subroutine while
another lighter-level use is still active. When a stack is used, each return
address can be pushed into the stack without destroying any previous values.
This solves the problem of recursive subroutines because the next subroutine
to exit is always the last subroutine that was called.

Program Interrupt

The concept of program interrupt is used to handle a variety of problems that
arise out of normal program sequence. Program interrupt refers to the transfer
of program control from a currently running program to another service pro-
gram as a result of an external or internal generated request. Control returns
to the original program after the service program is executed.

The interrupt procedure is, in principle, quite similar to a subroutine call
except for three variations: (1) The interrupt is usually initiated by an internal
or external signal rather than from the execution of an instruction (except for
software interrupt as explained later); (2) the address of the interrupt service
program is determined by the hardware rather than from the address field of
an instruction; and (3) an interrupt procedure usually stores all the information
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program status word

supervisor mode

necessary to define the state of the CPU rather than storing only the program
counter. These three procedural concepts are clarified further below.

After a program has been interrupted and the service routine been exe-
cuted, the CPU must return to exactly the same state that it was when the
interrupt occurred. Only if this happens will the interrupted program be able
to resume exactly as if nothing had happened. The state of the CPU at the end
of the execute cycle (when the interrupt is recognized) is determined from:

1. The content of the program counter
2. The content of all processor registers
3. The content of certain status conditions

The collection of all status bit conditions in the CPU is sometimes called
a program status word or PSW. The PSW is stored in a separate hardware register
and contains the status information that characterizes the state of the CPU.
Typically, it includes the status bits from the last ALU operation and it specifies
the interrupts that are allowed to occur and whether the CPU is operating in
a supervisor or user mode. Many computers have a resident operating system
that controls and supervises all other programs in the computer. When the
CPU is executing a program that is part of the operating system, it is said to
be in the supervisor or system mode. Certain instructions are privileged and
can be executed in this mode only. The CPU is normally in the user mode when
executing user programs. The mode that the CPU is operating at any given time
is determined from special status bits in the PSW.

Some computers store only the program counter when responding to an
interrupt. The service program must then include instructions to store status
and register content before these resources are used. Only a few computers
store both program counter and all status and register content in response to
an interrupt. Most computers just store the program counter and the PSW. In
some cases, there exist two sets of processor registers within the computer, one
for each CPU mode. In this way, when the program switches from the user to
the supervisor mode (or vice versa) in response to an interrupt, it is not
necessary to store the contents of processor registers as each mode uses its own
set of registers.

The hardware procedure for processing an interrupt is very similar to the
execution of a subroutine call instruction. The state of the CPU is pushed into
a memory stack and the beginning address of the service routine is transferred
to the program counter. The beginning address of the service routine is deter-
mined by the hardware rather than the address field of an instruction. Some
computers assign one memory location where interrupts are always trans-
ferred. The service routine must then determine what caused the interrupt and
proceed to service it. Some computers assign a memory location for each
possible interrupt. Sometimes, the hardware interrupt provides its own ad-
dress that directs the CPU to the desired service routine. In any case, the CPU
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must possess some form of hardware procedure for selecting a branch address
for servicing the interrupt.

The CPU does not respond to an interrupt until the end of an instruction
execution. Just before going to the next fetch phase, control checks for any
interrupt signals. If an interrupt is pending, control goes to a hardware inter-
rupt cycle. During this cycle, the contents of PC and PSW are pushed onto the
stack. The branch address for the particular interrupt is then transferred to PC
and a new PSW is loaded into the status register. The service program can now
be executed starting from the branch address and having a CPU mode as
specified in the new PSW.

The last instruction in the service program is a return from interrupt
instruction. When this instruction is executed, the stack is popped to retrieve
the old PSW and the return address. The PSW is transferred to the status
register and the return address to the program counter. Thus the CPU state
is restored and the original program can continue executing.

Types of Interrupts

There are three major types of interrupts that cause a break in the normal
execution of a program. They can be classified as:

1. External interrupts
2. Internal interrupts
3. Software interrupts

External interrupts come from input-output (/O) devices, from a timing
device, from a circuit monitoring the power supply, or from any other external
source. Examples that cause external interrupts are /O device requesting
transfer of data, /O device finished transfer of data, elapsed time of an event,
or power failure. Timeout interrupt may result from a program that is in an
endless loop and thus exceeded its time allocation. Power failure interrupt may
have as its service routine a program that transfers the complete state of the
CPU into a nondestructive memory in the few milliseconds before power
ceases.

Internal interrupts arise from illegal or erroneous use of an instruction or
data. Internal interrupts are also called traps. Examples of interrupts caused by
internal error conditions are register overflow, attempt to divide by zero, an
invalid operation code, stack overflow, and protection violation. These error
conditions usually occur as a result of a premature termination of the instruc-
tion execution. The service program that processes the internal interrupt deter-
mines the corrective measure to be taken.

The difference between internal and external interrupts is that the inter-
nal interrupt is initiated by some exceptional condition caused by the program
itself rather than by an external event. Internal interrupts are synchronous with



UNIT-1I

Input-Output Organizations: 1/0
Interface, I/O0 Bus and Interface
modules: I/O0 Vs Memory Bus,
Isolated Vs Memory-Mapped 1/0,
Asynchronous data Transfter-
Strobe Control, Hand Shaking:
Asynchronous Serial transfter-

Asynchronous Communication
interface, Modes of transter
Programmed I/0, Interrupt

Initiated I/0, DMA; DMA
Controllery, DMA Transfter, I10P-
CPU-IOP Communication, Intel
8089 IOP.



o

CHAPTER ELEVEN

Input—Output
Organization

IN THIS CHAPTER

11-1 Peripheral Devices

112 Input-Output Interface
113 Asynchronous Data Transfer
11-4  Modes of Transfer

11-5  Priority Interrupt

11-6 Direct Memory Access

11-7 Input—Output Processor
11-8  Serial Communication

11-1 Peripheral Devices

The input-output subsystem of a computer, referred to as 'O, provides an
efficient mode of communication between the central system and the outside
environment. Programs and data must be entered into computer memory for
processing and results obtained from computations must be recorded or dis-
played for the user. A computer serves no useful purpose without the ability
to receive information from an outside source and to transmit results in a
meaningful form.

The most familiar means of entering information into a computer is
through a typewriter-like keyboard that allows a person to enter alphanumeric
information directly. Every time a key is depmsed ﬁ'ne hmmm! sends a binary
coded character to the computer. The fastest speed for entering
information this way depends on the person’s typmg speed. On the other
hand, the central processing unit is an extremely fast device capable of per-
forming operations at very high speed. When input information is transferred
to the processor via a slow keyboard, the processor will be idle most of the time
while waiting for the information to arrive. To use a computer efficiently, a

381
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peripheral

monitor and

keyboard

printer

large amount of programs and data must be prepared in advance and transmit-
ted into a storage medium such as magnetic tapes or disks. The information
in the disk is then transferred into computer memory at a rapid rate. Results
of programs are also transferred into a high-speed storage, such as disks, from
which they can be transferred later into a printer to provide a printed output
of results.

Devices that are under the direct control of the computer are said to be
connected on-line. These devices are designed to read information into or out
of the memory unit upon command from the CPU and are considered to be
part of the total computer system. Input or output devices attached to the
computer are also called peripherals. Among the most common peripherals are
keyboards, display units, and printers. Peripherals that provide auxiliary stor-
age for the system are magnetic disks and tapes. Peripherals are electrome-
chanical and electromagnetic devices of some complexity. Only a very brief
discussion of their function will be given here without going into detail of their
internal construction.

Video monitors are the most commonly used peripherals. They consist
of a keyboard as the input device and a display unit as the output device. There
are different types of video monitors, but the most popular use a cathode ray
tube (CRT). The CRT contains an electronic gun that sends an electronic beam
to a phosphorescent screen in front of the tube. The beam can be deflected
horizontally and vertically. To produce a pattern on the screen, a grid inside
the CRT receives a variable voltage that causes the beam to hit the screen and
make it glow at selected spots. Horizontal and vertical signals deflect the beam
and make it sweep across the tube, causing the visual pattern to appear on the
screen. A characteristic feature of display devices is a cursor that marks the
position in the screen where the next character will be inserted. The cursor can
be moved to any position in the screen, to a single character, the beginning of
aword, or to any line. Edit keys add or delete information based on the cursor
position. The display terminal can operate in a single-character mode where
all characters entered on the screen through the keyboard are transmitted to
the computer simultaneously. In the block mode, the edited text is first stored
in a local memory inside the terminal. The text is transferred to the computer
as a block of data.

Printers provide a permanent record on paper of computer output data
or text. There are three basic types of character printers: daisywheel, dot
matrix, and laser printers. The daisywheel printer contains a wheel with the
characters placed along the circumference. To print a character, the wheel
rotates to the proper position and an energized magnet then presses the letter
against the ribbon. The dot matrix printer contains a set of dots along the
printing mechanism. For example, a 5 X 7 dot matrix printer that prints 80
characters per line has seven horizontal lines, each consisting of 5 x 80 = 400
dots. Each dot can be printed or not, depending on the specific characters that
are printed on the line. The laser printer uses a rotating photographic drum
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that is used to imprint the character images. The pattern is then transferred
onto paper in the same manner as a copying machine.

Magnetic tapes are used mostly for storing files of data: for example, a
company’s payroll record. Access is sequential and consists of records that can
be accessed one after another as the tape moves along a stationary read-write
mechanism. It is one of the cheapest and slowest methods for storage and has
the advantage that tapes can be removed when not in use. Magnetic disks have
high-speed rotational surfaces coated with magnetic material. Access is
achieved by moving a read-write mechanism to a track in the magnetized
surface. Disks are used mostly for bulk storage of programs and data. Tapes
and disks are discussed further in Sec. 12-1 in conjunction with their role as
auxiliary memory.

Other input and output devices encountered in computer systems are
digital incremental plotters, optical and magnetic character readers, analog-to-
digital converters, and various data acquisition equipment. Not all input comes
from people, and not all output is intended for people. Computers are used
to control various processes in real time, such as machine tooling, assembly
line procedures, and chemical and industrial processes. For such applications,
a method must be provided for sensing status conditions in the process and
sending control signals to the process being controlled.

The input-output organization of a computer is a function of the size of
the computer and the devices connected to it. The difference between a small
and a large system is mostly dependent on the amount of hardware the
computer has available for communicating with peripheral units and the num-
ber of peripherals connected to the system. Since each peripheral behaves
differently from any other, it would be prohibitive to dwell on the detailed
interconnections needed between the computer and each peripheral. Certain
techniques common to most peripherals are presented in this chapter.

ASCII Alphanumeric Characters
Input and output devices that communicate with people and the computer are
usually involved in the transfer of alphanumeric information to and from the
device and the computer. The standard binary code for the alphanumeric
characters is ASCII (American Standard Code for Information Interchange). It
uses seven bits to code 128 characters as shown in Table 11-1. The seven bits
of the code are designated by b, through b,, with b, being the most significant
bit. The letter A, for example, is represented in ASCH as 1000001 (column 100,
row 0001). The ASCII code contains 94 characters that can be printed and 34
nonprinting characters used for various control functions. The printing char-
acters consist of the 26 uppercase letters A through Z, the 26 lowercase letters,
the 10 numerals 0 through 9, and 32 special printable characters such as %, *,
and $.

The 34 control characters are designated in the ASCII table with abbrevi-



384  CHAPTER ELEVEN Input—Output Organization

TABLE 11-1 American Standard Code for Information Interchange (ASCII)

by bebs
babs by by 000 001 010 011 100 101 110 111
0000 NUL DLE SP 0 @ P ¢ p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F v f v
0111 BEL ETB ’ 7 G w g w
1000 BS CAN ( 8 H X h x
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J z j z
1011 VT ESC + H K [ k {
1100 FF FS , < L \ 1 |
1101 CR GS - = M ] m }
1110 SO RS . > N A n ~
1111 SI us / ? [¢] — o DEL
Control characters
NUL  Null DLE  Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ  Enquiry NAK  Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End of transmission block
BS. Backspace CAN  Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
vT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
. SO Shift out RS Record separator
SI Shift in us Unit separator
SP Space DEL  Delete

ated names. They are listed again below the table with their functional names.
The control characters are used for routing data and arranging the printed text
into a prescribed format. There are three types of control characters: format
effectors, information separators, and communication control characters. For-
mat effectors are characters that control the layout of printing. They include
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the familiar typewriter controls, such as backspace (BS), horizontal tabulation
(HT), and carriage return (CR). Information separators are used to separate the
data into divisions like paragraphs and pages. They include characters such as
record separator (RS) and file separator (FS). The communication control char-
acters are useful during the transmission of text between remote terminals.
Examples of communication control characters are STX (start of text) and ETX
(end of text), which are used to frame a text message when transmitted through
a communication medium.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity
as a single unit called a byte. Therefore, ASCII characters most often are stored
one per byte. The extra bit is sometimes used for other purposes, depending
on the application. For example, some printers recognize 8-bit ASCII characters
with the most significant bit set to 0. Additional 128 8-bit characters with the
most significant bit set to 1 are used for other symbols, such as the Greek
alphabet or italic type font. When used in data communication, the eighth bit
may be employed to indicate the parity of the binary-coded character.

11-2 Input—Output Interface

Input-output interface provides a method for transferring information be-
tween internal storage and external /O devices. Peripherals connected to a
computer need special communication links for interfacing them with the
central processing unit. The purpose of the communication link is to resolve
the differences that exist between the central computer and each peripheral.
The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their
manner of operation is different from the operation of the CPU and
memory, which are electronic devices. Therefore, a conversion of signal
values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer
rate of the CPU, and consequently, a synchronization mechanism may
be needed.

3. Data codes and formats in peripherals differ from the word format in
the CPU and memory.

4. The operating modes of peripherals are different from each other and
each must be controlled so as not to disturb the operation of other
peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware
components between the CPU and peripherals to supervise and synchronize
all input and output transfers. These components are called inferface units
because they interface between the processor bus and the peripheral device.
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In addition, each device may have its own controller that supervises the
operations of the particular mechanism in the peripheral.

L/O Bus and Interface Modules

A typical communication link between the processor and several peripherals
is shown in Fig. 11-1. The /O bus consists of data lines, address lines, and
control lines. The magnetic disk, printer, and terminal are employed in prac-
tically any general-purpose computer. The magnetic tape is used in some
computers for backup storage. Each peripheral device has assodated with it
an interface unit. Each interface decodes the address and control received from
the /O bus, interprets them for the peripheral, and provides signals for the
peripheral controller. It also synchmmz.es the data ﬁuw and supervises the
transfer between peripheral and processor. Each peripheral has its own con-
troller that operates the particular electromechanical device. For example, the
printer controller controls the paper motion, the print timing, and the selection
of printing characters. A controller may be housed separately or may be
physically integrated with the peripheral.

The I/O bus from the processor is attached to all peripheral interfaces. To
communicate with a particular device, the processor places a device address
on the address lines. Each interface attached to the /O bus contains an address
decoder that monitors the address lines. When the interface detects its own
address, it activates the path between the bus lines and the device that it
controls. All peripherals whose address does not correspond to the address in
the bus are disabled by their interface.

At the same time that the address is made available in the address lines,
the processor provides a function code in the control lines. The interface

Figure 11-1 Connection of O bus to input-output devices.
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selected responds to the function code and proceeds to execute it. The function
code is referred to as an /O command and is in essence an instruction that is
executed in the interface and its attached peripheral unit. The interpretation
of the command depends on the peripheral that the processor is addressing.
There are four types of commands that an interface may receive. They are
classified as control, status, data output, and data input.

A control command is issued to activate the peripheral and to inform it what
to do. For example, a magnetic tape unit may be instructed to backspace the
tape by one record, to rewind the tape, or to start the tape moving in the
forward direction. The particular control command issued depends on the
peripheral, and each peripheral receives its own distinguished sequence of
control commands, depending on its mode of operation.

A status command is used to test various status conditions in the interface
and the peripheral. For example, the computer may wish to check the status
of the peripheral before a transfer is initiated. During the transfer, one or more
errors may occur which are detected by the interface. These errors are desig-
nated by setting bits in a status register that the processor can read at certain
intervals.

A data output command causes the interface to respond by transferring data
from the bus into one of its registers. Consider an example with a tape unit.
The computer starts the tape moving by issuing a control command. The
processor then monitors the status of the tape by means of a status command.
When the tape is in the correct position, the processor issues a data output
command. The interface responds to the address and command and transfers
the information from the data lines in the bus to its buffer register. The interface
then communicates with the tape controller and sends the data to be stored
on tape.

The data input command is the opposite of the data output. In this case the
interface receives an item of data from the peripheral and places it in its buffer
register. The processor checks if data are available by means of a status com-
mand and then issues a data input command. The interface places the data on
the data lines, where they are accepted by the processor.

I/O versus Memory Bus

In addition to communicating with /O, the processor must communicate with
the memory unit. Like the /O bus, the memory bus contains data, address,
and read/write control lines. There are three ways that computer buses can be
used to communicate with memory and I/O:

1. Use two separate buses, one for memory and the other for I/O.

2. Use one common bus for both memory and IO but have separate
control lines for each. ‘

3. Use one common bus for memory and /O with common control lines.
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Iop

isolated I/O

memory-mapped

In the first method, the computer has independent sets of data, address,
and control buses, one for accessing memory and the other for /O. This is done
in computers that provide a separate /O processor (IOP) in addition to the
central processing unit (CPU). The memory communicates with both the CPU
and the IOP through a memory bus. The IOP communicates also with the input
and output devices through a separate I/O bus with its own address, data and
control lines. The purpose of the IOP is to provide an independent pathway
for the transfer of information between external devices and internal memory.
The VO processor is sometimes called a data channel. In Sec. 11-7 we discuss
the function of the IOP in more detail.

Isolated versus Memory-Mapped /O

Many computers use one common bus to transfer information between mem-
ory or /O and the CPU. The distinction between a memory transfer and /O
transfer is made through separate read and write lines. The CPU specifies
whether the address on the address lines is for a memory word or for an
interface register by enabling one of two possible read or write lines. The I/O
read and I/0 write control lines are enabled during an I/O transfer. The memory
read and memory write control lines are enabled during a memory transfer. This
configuration isolates all I/O interface addresses from the addresses assigned
to memory and is referred to as the isolated I/O method for assigning addresses
in a common bus.

In the isolated /O configuration, the CPU has distinct input and output
instructions, and each of these instructions is associated with the address of
an interface register. When the CPU fetches and decodes the operation code
of an input or output instruction, it places the address associated with the
instruction into the common address lines. At the same time, it enables the /O
read (for input) or /O write (for output) control line. This informs the external
components that are attached to the common bus that the address in the
address lines is for an interface register and not for a memory word. On the
other hand, when the CPU is fetching an instruction or an operand from
memory, it places the memory address on the address lines and enables the
memory read or memory write control line. This informs the external compo-
nents that the address is for a memory word and not for an I/O interface.

The isolated /O method isolates memory and I/O addresses so that
memory address values are not affected by interface address assignment since
each has its own address space. The other alternative is to use the same address
space for both memory and I/O. This is the case in computers that employ only
one set of read and write signals and do not distinguish between memory and
I/O addresses. This configuration is referred to as memory-mapped 1/0. The
computer treats an interface register as being part of the memory system. The
assigned addresses for interface registers cannot be used for memory words,
which reduces the memory address range available.
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In a memory-mapped I/O organization there are no specific input or
output instructions. The CPU can manipulate I/O data residing in interface
registers with the same instructions that are used to manipulate memory
words. Each interface is organized as a set of registers that respond to read and
write requests in the normal address space. Typically, a segment of the total
address space is reserved for interface registers, but in general, they can be
located at any address as long as there is not also a memory word that responds
to the same address.

Computers with memory-mapped I/O can use memory-type instructions
to access /O data. It allows the computer to use the same instructions for either
input-output transfers or for memory transfers. The advantage is that the load
and store instructions used for reading and writing from memory can be used
to input and output data from /O registers. In a typical computer, there are
more memory-reference instructions than I/O instructions. With memory-
mapped VO all instructions that refer to memory are also available for I/O.

Example of I/O Interface

An example of an /O interface unit is shown in block diagram form in Fig. 11-2.
It consists of two data registers called ports, a control register, a status register,
bus buffers, and timing and control circuits. The interface communicates with
the CPU through the data bus. The chip select and register select inputs
determine the address assigned to the interface. The /O read and write are two
control lines that specify an input or output, respectively. The four registers
communicate directly with the /O device attached to the interface.

The I/O data to and from the device can be transferred into either port
A or port B. The interface may operate with an output device or with an input
device, or with a device that requires both input and output. If the interface
is connected to a printer, it will only output data, and if it services a character
reader, it will only input data. A magnetic disk unit transfers data in both
directions but not at the same time, so the interface can use bidirectional lines.
A command is passed to the /O device by sending a word to the appropriate
interface register. In a system like this, the function code in the /O bus is not
needed because control is sent to the control register, status information is
received from the status register, and data are transferred to and from ports
A and B registers. Thus the transfer of data, control, and status information
is always via the common data bus. The distinction between data, control, or
status information is determined from the particular interface register with
which the CPU communicates.

The control register receives control information from the CPU. By load-
ing appropriate bits into the control register, the interface and the /O device
attached to it can be placed in a variety of operating modes. For example, port
A may be defined as an input port and port B as an output port. A magnetic
tape unit may be instructed to rewind the tape or to start the tape moving in
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Figure 11-2 Example of /O interface unit.

the forward direction. The bits in the status register are used for status condi-
tions and for recording errors that may occur during the data transfer. For
example, a status bit may indicate that port A has received a new data item from
the /O device. Another bit in the status register may indicate that a parity error
has occurred during the transfer.

The interface registers communicate with the CPU through the bidirec-
tional data bus. The address bus selects the interface unit through the chip
select and the two register select inputs. A circuit must be provided externally
(usually, a decoder) to detect the address assigned to the interface registers.
This circuit enables the chip select (CS) input when the interface is selected by
the address bus. The two register select inputs RS1 and RSO are usually
connected to the two least significant lines of the address bus. These two inputs
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select one of the four registers in the interface as specified in the table accom-
panying the diagram. The content of the selected register is transfer into the
CPU via the data bus when the I/O read signal is enabled. The CPU transfers
binary information into the selected register via the data bus when the /O write
input is enabled.

11-3 Asynchronous Data Transfer

The internal operations in a digital system are synchronized by means of clock
pulses supplied by a common pulse generator. Clock pulses are applied to all
registers within a unit and all data transfers among internal registers occur
simultaneously during the occurrence of a clock pulse. Two units, such as a
CPU and an I/O interface, are designed independently of each other. If the
registers in the interface share a common clock with the CPU registers, the
transfer between the two units is said to be synchronous. In most cases, the
internal timing in each unit is independent from the other in that each uses its
own private clock for internal registers. In that case, the two units are said to
be asynchronous to each other. This approach is widely used in most computer
systems.

Asynchronous data transfer between two independent units requires
that control signals be transmitted between the communicating units to indi-
cate the time at which data is being transmitted. One way of achieving this is
by means of a strobe pulse supplied by one of the units to indicate to the other
unit when the transfer has to occur. Another method commonly used is to
accompany each data item being transferred with a control signal that indicates
the presence of data in the bus. The unit receiving the data item responds with
another control signal to acknowledge receipt of the data. This type of agree-
ment between two independent units is referred to as handshaking.

The strobe pulse method and the handshaking method of asynchronous
data transfer are not restricted to /O transfers. In fact, they are used extensively
on numerous occasions requiring the transfer of data between two indepen-
dent units. In the general case we consider the transmitting unit as the source
and the receiving unit as the destination. For example, the CPU is the source
unit during an output or a write transfer and it is the destination unit during
an input or aread transfer. It is customary to specify the asynchronous transfer
between two independent units by means of a timing diagram that shows the
timing relationship that must exist between the control signals and the data in
the buses. The sequence of control during an asynchronous transfer depends
on whether the transfer is initiated by the source or by the destination unit.

Strobe Control

The strobe control method of asynchronous data transfer employs a single
control line to time each transfer. The strobe may be activated by either the
source or the destination unit. Figure 11-3(a) shows a source-initiated transfer.
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Figure 11-3  Source-initiated strobe for data transfer.

The data bus carries the binary information from source unit to the destination
unit. Typically, the bus has multiple lines to transfer an entire byte or word.
The strobe is a single line that informs the destination unit when a valid data
word is available in the bus.

As shown in the timing diagram of Fig. 11-3(b), the source unit first places
the data on the data bus. After a brief delay to ensure that the data settle to
a steady value, the source activates the strobe pulse. The information on the
data bus and the strobe signal remain in the active state for a sufficient time
period to allow the destination unit to receive the data. Often, the destination
unit uses the falling edge of the strobe pulse to transfer the contents of the data
bus into one of its internal registers. The source removes the data from the bus
a brief period after it disables its strobe pulse. Actually, the source does not
have to change the information in the data bus. The fact that the strobe signal
is disabled indicates that the data bus does not contain valid data. New valid
data will be available only after the strobe is enabled again.

Figure 11-4 shows a data transfer initiated by the destination unit. In this
case the destination unit activates the strobe pulse, informing the source to
provide the data. The source unit responds by placing the requested binary
information on the data bus. The data must be valid and remain in the bus long
enough for the destination unit to accept it. The falling edge of the strobe pulse
can be used again to trigger a destination register. The destination unit then
disables the strobe. The source removes the data from the bus after a predeter-
mined time interval.

In many computers the strobe pulse is actually controlled by the clock
pulses in the CPU. The CPU is always in control of the buses and informs the
external units how to transfer data. For example, the strobe of Fig. 11-3 could
be a memory-write control signal from the CPU to a memory unit. The source,
being the CPU, places a word on the data bus and informs the memory unit,
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Figure 11-4 Destination-initiated strobe for data transfer.

which is the destination, that this is a write operation. Similarly, the strobe of
Fig. 11-4 could be a memory-read control signal from the CPU to a memory
unit. The destination, the CPU, initiates the read operation to inform the
memory, which is the source, to place a selected word into the data bus.

The transfer of data between the CPU and an interface unit is similar to
the strobe transfer just described. Data transfer between an interface and an
/O device is commonly controlled by a set of handshaking lines.

Handshaking

The disadvantage of the strobe method is that the source unit that initiates the
transfer has no way of knowing whether the destination unit has actually
received the data item that was placed in the bus. Similarly, a destination unit
that initiates the transfer has no way of knowing whether the source unit has
actually placed the data on the bus. The handshake method solves this problem
by introducing a second control signal that provides a reply to the unit that
initiates the transfer. The basic principle of the two-wire handshaking method
of data transfer is as follows. One control line is in the same direction as the
data flow in the bus from the source to the destination. It is used by the source
unit to inform the destination unit whether there are valid data in the bus. The
other control line is in the other direction from the destination to the source.
It is used by the destination unit to inform the source whether it can accept
data. The sequence of control during the transfer depends on the unit that
initiates the transfer.

Figure 11-5 shows the data transfer procedure when initiated by the
source. The two handshaking lines are data valid, which is generated by the
source unit, and data accepted, generated by the destination unit. The timing
diagram shows the exchange of signals between the two units. The sequence
of events listed in part (c) shows the four possible states that the system can
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Figure 11-5 Source-initiated transfer using handshaking.

be at any given time. The source unit initiates the transfer by placing the data
on the bus and enabling its data valid signal. The data accepted signal is activated
by the destination unit after it accepts the data from the bus. The source unit
then disables its data valid signal, which invalidates the data on the bus. The
destination unit then disables its data accepted signal and the system goes into
its initial state. The source does not send the next data item until after the
destination unit shows its readiness to accept new data by disabling its data
accepted signal. This scheme allows arbitrary delays from one state to the next
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and permits each unit to respond at its own data transfer rate. The rate of
transfer is determined by the slowest unit.

The destination-initiated transfer using handshaking lines is shown in
Fig. 11-6. Note that the name of the signal generated by the destination unit
has been changed to ready for data to reflect its new meaning. The source unit
in this case does not place data on the bus until after it receives the ready for
data signal from the destination unit. From there on, the handshaking proce-
dure follows the same pattern as in the source-initiated case. Note that the

Figure 11-6 Destination-initiated transfer using handshaking.
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sequence of events in both cases would be identical if we consider the ready for
data signal as the complement of data accepted. In fact, the only difference
between the source-initiated and the destination-initiated transfer is in their
choice of initial state.

The handshaking scheme provides a high degree of flexibility and reliabil-
ity because the successful completion of a data transfer relies on active partic-
ipation by both units. If one unit is faulty, the data transfer will not be
completed. Such an error can be detected by means of a timeout mechanism,
which produces an alarm if the data transfer is not completed within a prede-
termined time. The timeout is implemented by means of an internal clock that
starts counting time when the unit enables one of its handshaking control
signals. If the return handshake signal does not respond within a given time
period, the unit assumes that an error has occurred. The timeout signal can be
used to interrupt the processor and hence execute a service routine that takes
appropriate error recovery action.

Asynchronous Serial Transfer

The transfer of data between two units may be done in parallel or serial. In
parallel data transmission, each bit of the message has its own path and the
total message is transmitted at the same time. This means that an n-bit message
must be transmitted through n separate conductor paths. In serial data trans-
mission, each bit in the message is sent in sequence one at a time. This method
requires the use of one pair of conductors or one conductor and a common
ground. Parallel transmission is faster but requires many wires. It is used for
short distances and where speed is important. Serial transmission is slower but
is less expensive since it requires only one pair of conductors.

Serial transmission can be synchronous or asynchronous. In synchron-
ous transmission, the two units share a common clock frequency and bits are
transmitted continuously at the rate dictated by the clock pulses. In long-
distant serial transmission, each unit is driven by a separate clock of the same
frequency. Synchronization signals are transmitted periodically between the
two units to keep their clocks in step with each other. In asynchronous trans-
mission, binary information is sent only when it is available and the line
remains idle when there is no information to be transmitted. This is in contrast
to synchronous transmission, where bits must be transmitted continuously to
keep the clock frequency in both units synchronized with each other. Syn-
chronous serial transmission is discussed further in Sec. 11-8.

A serial asynchronous data transmission technique used in many interac-
tive terminals employs special bits that are inserted at both ends of the char-
acter code. With this technique, each character consists of three parts: a start
bit, the character bits, and stop bits. The convention is that the transmitter rests
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at the 1-state when no characters are transmitted. The first bit, called the start
bit, is always a 0 and is used to indicate the beginning of a character. The last
bit called the stop bit is always a 1. An example of this format is shown in
Fig. 11-7.

A transmitted character can be detected by the receiver from knowledge
of the transmission rules:

1. When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit,
which is always 0.

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected
when the line returns to the 1-state for at least one bit time.

Using these rules, the receiver can detect the start bit when the line goes from
1t00. A clock in the receiver examines the line at proper bit times. The receiver
knows the transfer rate of the bits and the number of character bits to accept.
After the character bits are transmitted, one or two stop bits are sent. The stop
bits are always in the 1-state and frame the end of the character to signify the
idle or wait state.

At the end of the character the line is held at the 1-state for a period of
at least one or two bit times so that both the transmitter and receiver can
resynchronize. The length of time that the line stays in this state depends on
the amount of time required for the equipment to resynchronize. Some older
electromechanical terminals use two stop bits, but newer terminals use one
stop bit. The line remains in the 1-state until another character is transmitted.
The stop time ensures that a new character will not follow for one or two bit
times.

As an illustration, consider the serial transmission of a terminal whose
transfer rate is 10 characters per second. Each transmitted character consists

Figure 11-7  Asynchronous serial transmission.
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baud rate

of a start bit, eight information bits, and two stop bits, for a total of 11 bits. Ten
characters per second means that each character takes 0.1 s for transfer. Since
there are 11 bits to be transmitted, it follows that the bit time is 9.09 ms. The
baud rate is defined as the rate at which serial information is transmitted and
is equivalent to the data transfer in bits per second. Ten characters per second
with an 11-bit format has a transfer rate of 110 baud.

The terminal has a keyboard and a printer. Every time a key is depressed,
the terminal sends 11 bits serially along a wire. To print a character in the
printer, an 11-bit message must be received along another wire. The terminal
interface consists of a transmitter and a receiver. The transmitter accepts an
8-bit character from the computer and proceeds to send a serial 11-bit message
into the printer line. The receiver accepts a serial 11-bit message from the
keyboard line and forwards the 8-bit character code into the computer. Inte-
grated circuits are available which are specifically designed to provide the
interface between computer and similar interactive terminals. Such a circuit is
called an asynchronous communication interface or a universal asynchronous receiver-
transmitter (UART).

Asynchronous Communication Interface

The block diagram of an asynchronous communication interface is shown in
Fig. 11-8. It functions as both a transmitter and a receiver. The interface is
initialized for a particular mode of transfer by means of a control byte that is
loaded into its control register. The transmitter register accepts a data byte from
the CPU through the data bus. This byte is transferred to a shift register for
serial transmission. The receiver portion receives serial information into an-
other shift register, and when a complete data byte is accumulated, it is
transferred to the receiver register. The CPU can select the receiver register to
read the byte through the data bus. The bits in the status register are used for
input and output flags and for recording certain errors that may occur during
the transmission. The CPU can read the status register to check the status of
the flag bits and to determine if any errors have occurred. The chip select and
the read and write control lines communicate with the CPU. The chip select
(CS) input is used to select the interface through the address bus. The register
select (RS) is associated with the read (RD) and write (WR) controls. Two
registers are write-only and two are read-only. The register selected is a func-
tion of the RS value and the RD and WR status, as listed in the table accom-
panying the diagram.

The operation of the asynchronous communication interface is initialized
by the CPU by sending a byte to the control register. The initialization proce-
dure places the interface in a specific mode of operation as it defines certain
parameters such as the baud rate to use, how many bits are in each character,
whether to generate and check parity, and how many stop bits are appended
to each character. Two bits in the status register are used as flags. One bit is
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Figure 11-8 Block diagram of a typical asynchronous communication interface.

used to indicate whether the transmitter register is empty and another bit is
used to indicate whether the receiver register is full.

The operation of the transmitter portion of the interface is as follows. The
CPU reads the status register and checks the flag to see if the transmitter
register is empty. If it is empty, the CPU transfers a character to the transmitter
register and the interface clears the flag to mark the register full. The first bit
in the transmitter shift register is set to 0 to generate a start bit. The character
is transferred in parallel from the transmitter register to the shift register and
the appropriate number of stop bits are appended into the shift register. The
transmitter register is then marked empty. The character can now be transmit-
ted one bit at a time by shifting the data in the shift register at the specified
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baud rate. The CPU can transfer another character to the transmitter register
after checking the flag in the status register. The interface is said to be double
buffered because a new character can be loaded as soon as the previous one
starts transmission.

The operation of the receiver portion of the interface is similar. The
receive data input is in the 1-state when the line is idle. The receiver control
monitors the receive-data line for a 0 signal to detect the occurrence of a start
bit. Once a start bit has been detected, the incoming bits of the character are
shifted into the shift register at the prescribed baud rate. After receiving the
databits, the interface checks for the parity and stop bits. The character without
the start and stop bits is then transferred in parallel from the shift register to
the receiver register. The flag in the status register is set to indicate that the
receiver register is full. The CPU reads the status register and checks the flag,
and if set, it reads the data from the receiver register.

The interface checks for any possible errors during transmission and sets
appropriate bits in the status register. The CPU can read the status register at
any time to check if any errors have occurred. Three possible errors that the
interface checks during transmission are parity error, framing error, and over-
run error. Parity error occurs if the number of 1’s in the received data is not
the correct parity. A framing error occurs if the right number of stop bits is not
detected at the end of the received character. An overrun error occurs if the
CPU does not read the character from the receiver register before the next one
becomes available in the shift register. Overrun error results in a loss of
characters in the received data stream.

First-In, First-Out Buffer
A first-in, first-out (FIFO) buffer is a memory unit that stores information in
such a manner that the item first in is the item first out. A FIFO buffer comes
with separate input and output terminals. The important feature of this buffer
is that it can input data and output data at two different rates and the output
data are always in the same order in which the data entered the buffer. When
placed between two units, the FIFO can accept data from the source unit at one
rate of transfer and deliver the data to the destination unit at another rate. If
the source unit is slower than the destination unit, the buffer can be filled with
data at a slow rate and later emptied at the higher rate. If the source is faster
than the destination, the FIFO is useful for those cases where the source data
arrive in bursts that fill out the buffer but the time between bursts is long
enough for the destination unit to empty some or all the information from the
buffer. Thus a FIFO buffer can be useful in some applications when data are
transferred asynchronously. It piles up data as they come in and gives them
away in the same order when the data are needed.

The logic diagram of a typical 4 X 4 FIFO buffer is shown in Fig. 11-9. It
consists of four 4-bit registers RI, I = 1,2,3,4, and a control register with
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Figure 11-9 Circuit diagram of 4 X 4 FIFO buffer.

flip-flops F, i = 1, 2,3, 4, one for each register. The FIFO can store four words
of four bits each. The number of bits per word can be increased by increasing
the number of bits in each register and the number of words can be increased
by increasing the number of registers.

A flip-flop F,in the control register that is set to 1 indicates that a 4-bit data

word is stored in the corresponding register RI. A 0 in F, indicates that the
corresponding register does not contain valid data. The control register directs
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the movement of data through the registers. Whenever the F, bit of the control
register is set (F; = 1) and the F,, bit is reset (Fi,; = 1), a clock is generated
causing register R(I + 1) to accept the data from register RI. The same clock
transition sets F., to 1 and resets F; to 0. This causes the control flag to move
one position to the right together with the data. Data in the registers move
down the FIFO toward the output as long as there are empty locations ahead
of it. This ripple-through operation stops when the data reach a register RI with
the next flip-flop F..; being set to 1, or at the last register R4. An overall master
clear is used to initialize all control register flip-flops to 0.

Data are inserted into the buffer provided that the input ready signal is
enabled. This occurs when the first control flip-flop F, is reset, indicating that
register R1is empty. Data are loaded from the input lines by enabling the clock
in R1 through the insert control line. The same clock sets F;, which disables the
input ready control, indicating that the FIFO is now busy and unable to accept
more data. The ripple-through process begins provided that R2 is empty. The
data in R1 are transferred into R2 and F, is cleared. This enables the input ready
line, indicating that the inputs are now available for another data word. If the
FIFO is full, F; remains set and the input ready line stays in the 0 state. Note
that the two control lines input ready and insert constitute a destination-initiated
pair of handshake lines.

The data falling through the registers stack up at the output end. The
output ready control line is enabled when the last control flip-flop F, is set,
indicating that there are valid data in the output register R4. The output data
from R4 are accepted by a destination unit, which then enables the delete
control signal. This resets F,, causing output ready to disable, indicating that the
data on the output are no longer valid. Only after the delete signal goes back
to 0 can the data from R3 move into R4. If the FIFO is empty, there will be no
data in R3 and F, will remain in the reset state. Note that the two control lines
output ready and delete constitute a source-initiated pair of handshake lines.

11-4 Modes of Transfer

Binary information received from an external device is usually stored in mem-
ory for later processing. Information transferred from the central computer into
an external device originates in the memory unit. The CPU merely executes the
I/O instructions and may accept the data temporarily, but the ultimate source
or destination is the memory unit. Data transfer between the central computer
and I/O devices may be handled in a variety of modes. Some modes use the
CPU as an intermediate path; others transfer the data directly to and from the
memory unit. Data transfer to and from peripherals may be handled in one of
three possible modes:

1. Programmed I/O
2. Interrupt-initiated /O
3. Direct memory access (DMA)
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Programmed /O operations are the result of /O instructions written in
the computer program. Each data item transfer is initiated by an instruction
in the program. Usually, the transfer is to and from a CPU register and
peripheral. Other instructions are needed to transfer the data to and from CPU
and memory. Transferring data under program control requires constant mon-
itoring of the peripheral by the CPU. Once a data transfer is initiated, the CPU
is required to monitor the interface to see when a transfer can again be made.
Itis up to the programmed instructions executed in the CPU to keep close tabs
on everything that is taking place in the interface unit and the IO device.

In the programmed /O method, the CPU stays in a program loop until
the /O unit indicates that it is ready for data transfer. This is a time-consuming
process since it keeps the processor busy needlessly. It can be avoided by using
an interrupt facility and special commands to inform the interface to issue an
interrupt request signal when the data are available from the device. In the
meantime the CPU can proceed to execute another program. The interface
meanwhile keeps monitoring the device. When the interface determines that
the device is ready for data transfer, it generates an interrupt request to the
computer. Upon detecting the external interrupt signal, the CPU momentarily
stops the task it is processing, branches to a service program to process the /O
transfer, and then returns to the task it was originally performing.

Transfer of data under programmed I/O is between CPU and peripheral.
In direct memory access (DMA), the interface transfers data into and out of the
memory unit through the memory bus. The CPU initiates the transfer by
supplying the interface with the starting address and the number of words
needed to be transferred and then proceeds to execute other tasks. When the
transfer is made, the DMA requests memory cycles through the memory bus.
When the request is granted by the memory controller, the DMA transfers the
data directly into memory. The CPU merely delays its memory access operation
to allow the direct memory /O transfer. Since peripheral speed is usually
slower than processor speed, /O-memory transfers are infrequent compared
to processor access to memory. DMA transfer is discussed in more detail in
Sec. 11-6.

Many computers combine the interface logic with the requirements for
direct memory access into one unit and call it an /O processor (IOP). The IOP
can handle many peripherals through a DMA and interrupt facility. In such
a system, the computer is divided into three separate modules: the memory
unit, the CPU, and the IOP. /O processors are presented in Sec. 11-7.

v

Example of Programmed 1/O
In the programmed /O method, the /O device does not have direct access to
memory. A transfer from an I/O device to memory requires the execution of
several instructions by the CPU, including an input instruction to transfer the
data from the device to the CPU and a store instruction to transfer the data from
the CPU to memory. Other instructions may be needed to verify that the data
are available from the device and to count the numbers of words transferred.
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An example of data transfer from an /O device through an interface into
the CPU is shown in Fig. 11-10. The device transfers bytes of data one at a time
as they are available. When a byte of data is available, the device places it in
the /O bus and enables its data valid line. The interface accepts the byte into
its data register and enables the data accepted line. The interface sets a bit in
the status register that we will refer to as an F or “flag” bit. The device can now
disable the data valid line, but it will not transfer another byte until the data
accepted line is disabled by the interface. This is according to the handshaking
procedure established in Fig. 11-5.

A program is written for the computer to check the flag in the status
register to determine if a byte has been placed in the data register by the /O
device. This is done by reading the status register into a CPU register and
checking the value of the flag bit. If the flag is equal to 1, the CPU reads the
data from the data register. The flag bit is then cleared to 0 by either the CPU
or the interface, depending on how the interface circuits are designed. Once
the flag is cleared, the interface disables the data accepted line and the device
can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown
in Fig. 11-11. It is assumed that the device is sending a sequence of bytes
that must be stored in memory. The transfer of each byte requires three
instructions:

1. Read the status register.

2. Check the status of the flag bit and branch to step 1 if not set or to step
3 if set.

3. Read the data register.
Each byte is read into a CPU register and then transferred to memory with a

store instruction. A common /O programming task is to transfer a block of
words from an I/O device and store them in a memory buffer. A program that

Figure 11-10 Data transfer from /O device to CPU.
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Figure 11-11  Flowchart for CPU program to input data.

stores input characters in a memory buffer using the instructions defined in
Chap. 6 is listed in Table 6-21.

The programmed I/O method is particularly useful in small low-speed
computers or in systems that are dedicated to monitor a device continuously.
The difference in information transfer rate between the CPU and the /O device
makes this type of transfer inefficient. To see why this is inefficient, consider
a typical computer that can execute the two instructions that read the status
register and check the flag in 1 ps. Assume that the input device transfers its
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vectored interrupt

I/O routines

data at an average rate of 100 bytes per second. This is equivalent to one byte
every 10,000 ps. This means that the CPU will check the flag 10,000 times
between each transfer. The CPU is wasting time while checking the flag instead
of doing some other useful processing task.

Interrupt-Initiated /O

An alternative to the CPU constantly monitoring the flag is to let the interface
inform the computer when it is ready to transfer data. This mode of transfer
uses the interrupt facility. While the CPU is running a program, it does not
check the flag. However, when the flag is set, the computer is momentarily
interrupted from proceeding with the current program and is informed of the
fact that the flag has been set. The CPU deviates from what it is doing to take
care of the input or output transfer. After the transfer is completed, the
computer returns to the previous program to continue what it was doing before
the interrupt.

The CPU responds to the interrupt signal by storing the return address
from the program counter into a memory stack and then control branches to
a service routine that processes the required /O transfer. The way that the
processor chooses the branch address of the service routine varies from one
unit to another. In principle, there are two methods for accomplishing this.
Oneis called vectored interrupt and the other, nonvectored interrupt. In a nonvec-
tored interrupt, the branch address is assigned to a fixed location in memory.
In a vectored interrupt, the source that interrupts supplies the branch informa-
tion to the computer. This information is called the interrupt vector. In some
computers the interrupt vector is the first address of the /O service routine.
In other computers the interrupt vector is an address that points to a location
in memory where the beginning address of the /O service routine is stored.
A system with vectored interrupt is demonstrated in Sec. 11-5.

Software Considerations

The previous discussion was concerned with the basic hardware needed to
interface I/O devices to a computer system. A computer must also have soft-
ware routines for controlling peripherals and for transfer of data between the
processor and peripherals. I/O routines must issue control commands to acti-
vate the peripheral and to check the device status to determine when it is ready
for data transfer. Once ready, information is transferred item by item until all
the data are transferred. In some cases, a control command is then given to
execute a device function such as stop tape or print characters. Error checking
and other useful steps often accompany the transfers. In interrupt-controlled
transfers, the /O software must issue commands to the peripheral to interrupt
when ready and to service the interrupt when it occurs. In DMA transfer, the
/O software must initiate the DMA channel to start its operation.
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Software control of input-output equipment is a complex undertaking.
For this reason I/O routines for standard peripherals are provided by the
manufacturer as part of the computer system. They are usually included within
the operating system. Most operating systems are supplied with a variety of
/O programs to support the particular line of peripherals offered for the
computer. I/O routines are usually available as operating system procedures
and the user refers to the established routines to specify the type of transfer
required without going into detailed machine language programs.

11-5 Priority Interrupt

Data transfer between the CPU and an I/O device is initiated by the CPU.
However, the CPU cannot start the transfer unless the device is ready to
communicate with the CPU. The readiness of the device can be determined
from an interrupt signal. The CPU responds to the interrupt request by storing
the return address from PC into a memory stack and then the program
branches to a service routine that processes the required transfer. As discussed
in Sec. 8-7, some processors also push the current PSW (program status word)
onto the stack and load a new PSW for the service routine. We neglect the PSW
here in order not to complicate the discussion of /O interrupts.

In a typical application a number of /O devices are attached to the
computer, with each device being able to originate an interrupt request. The
first task of the interrupt system is to identify the source of the interrupt. There
is also the possibility that several sources will request service simultaneously.
In this case the system must also decide which device to service first.

A priority interrupt is a system that establishes a priority over the various
sources to determine which condition is to be serviced first when two or more
requests arrive simultaneously. The system may also determine which condi-
tions are permitted to interrupt the computer while another interrupt is being
serviced. Higher-priority interrupt levels are assigned to requests which, if
delayed or interrupted, could have serious consequences. Devices with high-
speed transfers such as magnetic disks are given high priority, and slow
devices such as keyboards receive low priority. When two devices interrupt the
computer at the same time, the computer services the device, with the higher
priority first.

Establishing the priority of simultaneous interrupts can be done by soft-
ware or hardware. A polling procedure is used to identify the highest-priority
source by software means. In this method there is one common branch address
for all interrupts. The program that takes care of interrupts begins at the branch
address and polls the interrupt sources in sequence. The order in which they
are tested determines the priority of each interrupt. The highest-priority source
is tested first, and if its interrupt signal is on, control branches to a service
routine for this source. Otherwise, the next-lower-priority source is tested, and
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vector address (VAD)

so on. Thus the initial service routine for all interrupts consists of a program
that tests the interrupt sources in sequence and branches to one of many
possible service routines. The particular service routine reached belongs to the
highest-priority device among all devices that interrupted the computer. The
disadvantage of the software method is that if there are many interrupts, the
time required to poll them can exceed the time available to service the /O
device. In this situation a hardware priority-interrupt unit can be used to speed
up the operation.

A hardware priority-interrupt unit functions as an overall manager in an
interrupt system environment. It accepts interrupt requests from many
sources, determines which of the incoming requests has the highest priority,
and issues an interrupt request to the computer based on this determination.
To speed up the operation, each interrupt source has its own interrupt vector
to access its own service routine directly. Thus no polling is required because
all the decisions are established by the hardware priority-interrupt unit. The
hardware priority function can be established by either a serial or a parallel
connection of interrupt lines. The serial connection is also known as the daisy-
chaining method.

Daisy-Chaining Priority

The daisy-chaining method of establishing priority consists of a serial connec-
tion of all devices that request an interrupt. The device with the highest priority
is placed in the first position, followed by lower-priority devices up to the
device with the lowest priority, which is placed last in the chain. This method
of connection between three devices and the CPU is shown in Fig. 11-12. The
interrupt request line is common to all devices and forms a wired logic connec-
tion. If any device has its interrupt signal in the low-level state, the interrupt
line goes to the low-level state and enables the interrupt input in the CPU.
When no interrupts are pending, the interrupt line stays in the high-level state
and no interrupts are recognized by the CPU. This is equivalent to a negative-
logic OR operation. The CPU responds to an interrupt request by enabling the
interrupt acknowledge line. This signal is received by device 1 at its PI (priority
in) input. The acknowledge signal passes on to the next device through the PO
(priority out) output only if device 1 is not requesting an interrupt. If device
1hasa pending interrupt, it blocks the acknowledge signal from the next device
by placing a 0 in the PO output. It then proceeds to insert its own interrupt
vector address (VAD) into the data bus for the CPU to use during the interrupt
cycle.

A device with a 0 in its PI input generates a 0 in its PO output to inform
the next-lower-priority device that the acknowledge signal has been blocked.
A device that is requesting an interrupt and has a 1 in its Pl input will intercept
the acknowledge signal by placing a 0 in its PO output. If the device does not
have pending interrupts, it transmits the acknowledge signal to the next device
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Figure 11-12  Daisy-chain priority interrupt.

by placing a 1in its PO output. Thus the device with PI = 1and PO = 0is the
one with the highest priority that is requesting an interrupt, and this device
places its VAD on the data bus. The daisy chain arrangement gives the highest
priority to the device that receives the interrupt acknowledge signal from the
CPU. The farther the device is from the first position, the lower is its priority.

Figure 11-13 shows the internal logic that must be included within each
device when connected in the daisy-chaining scheme. The device sets its RF
flip-flop when it wants to interrupt the CPU. The output of the RF flip-flop goes
through an open-collector inverter, a circuit that provides the wired logic for
the common interrupt line. If PI = 0, both PO and the enable line to VAD are
equal to 0, irrespective of the value of RF. If PI = 1and RF = 0, then PO = 1
and the vector address is disabled. This condition passes the acknowledge
signal to the next device through PO. The device is active when PI = 1 and
RF = 1. This condition places a 0 in PO and enables the vector address for the
data bus. It is assumed that each device has its own distinct vector address.
The RF flip-flop is reset after a sufficient delay to ensure that the CPU has
received the vector address.

Parallel Priority Interrupt

The parallel priority interrupt method uses a register whose bits are set sepa-
rately by the interrupt signal from each device. Priority is established aceording
to the position of the bits in the register. In addition to the interrupt register,
the circuit may include a mask register whose purpose is to control the status
of each interrupt request. The mask register can be programmed to disable
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Figure 11-13  One stage of the daisy-chain priority arrangement.

lower-priority interrupts while a higher-priority device is being serviced. It can
also provide a facility that allows a high-priority device to interrupt the CPU
while a lower-priority device is being serviced.

The priority logic for a system of four interrupt sources is shown in
Fig. 11-14. It consists of an interrupt register whose individual bits are set by
external conditions and cleared by program instructions. The magnetic disk,
being a high-speed device, is given the highest priority. The printer has the
next priority, followed by a character reader and a keyboard. The mask register
has the same number of bits as the interrupt register. By means of program
instructions, it is possible to set or reset any bit in the mask register. Each
interrupt bit and its corresponding mask bit are applied to an AND gate to
produce the four inputs to a priority encoder. In this way an interrupt is
recognized only if its corresponding mask bit is set to 1 by the program. The
priority encoder generates two bits of the vector address, which is transferred
to the CPU.

Another output from the encoder sets an interrupt status flip-flop IST
when an interrupt that is not masked occurs. The interrupt enable flip-flop IEN
can be set or cleared by the program to provide an overall control over the
interrupt system. The outputs of IST ANDed with IEN provide a common
interrupt signal for the CPU. The interrupt acknowledge INTACK signal from
the CPU enables the bus buffers in the output register and a vector address
VAD is placed into the data bus. We will now explain the priority encoder
circuit and then discuss the interaction between the priority interrupt con-
troller and the CPU.
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Priority Encoder

The priority encoder is a circuit that implements the priority function. The logic
of the priority encoder is such that if two or more inputs arrive at the same time,
the input having the highest priority will take precedence. The truth table of
a four-input priority encoder is given in Table 11-2. The x’s in the table
designate don’t-care conditions. Input I; has the highest priority; so regardless
of the values of other inputs, when this input is 1, the output generates an
output xy = 00. [, has the next priority level. The outputis 01ifI; = 1 provided
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TABLE 11-2 Priority Encoder Truth Table

Inputs Outputs

Io I, I, I x y IST Boolean functions

w

x =140
=10, + 1415
UST) =1y + 1, + 1, + 1,

X = =00

0
1
0
1
X

cooco~
coo~=X
oo =X X
O = XX X
O

that I, = 0, regardless of the values of the other two lower-priority inputs. The
output for I, is generated only if higher-priority inputs are 0, and so on down
the priority level. The interrupt status IST is set only when one or more inputs
are equal to 1. If all inputs are 0, IST is cleared to 0 and the other outputs of
the encoder are not used, so they are marked with don’t-care conditions. This
is because the vector address is not transferred to the CPU when IST = 0. The
Boolean functions listed in the table specify the internal logic of the encoder.
Usually, a computer will have more than four interrupt sources. A priority
encoder with eight inputs, for example, will generate an output of three bits.
The output of the priority encoder is used to form part of the vector
address for each interrupt source. The other bits of the vector address can be
assigned any value. For example, the vector address can be formed by append-
ing six zeros to the x and y outputs of the encoder. With this choice the interrupt
vectors for the four /O devices are assigned binary numbers 0, 1, 2, and 3.

Interrupt Cycle

The interrupt enable flip-flop IEN shown in Fig. 11-14 can be set or cleared by
program instructions. When IEN is cleared, the interrupt request coming from
IST is neglected by the CPU. The program-controlled IEN bit allows the pro-
grammer to choose whether to use the interrupt facility. If an instruction to
clear IEN has been inserted in the program, it means that the user does not
want his program to be interrupted. An instruction to set IEN indicates that
the interrupt facility will be used while the current program is running. Most
computers include internal hardware that clears IEN to 0 every time an inter-
rupt is acknowledged by the processor.

At the end of each instruction cycle the CPU checks IEN and the interrupt
signal from IST. If either is equal to 0, control continues with the next instruc-
tion. If both IEN and IST are equal to 1, the CPU goes to an interrupt cycle.
During the interrupt cycle the CPU performs the following sequence of micro-
operations:

SP«SP -1  Decrement stack pointer
M[SP]«PC Push PC into stack



SECTION 11-5 Priority Interrupt 413

INTACK <1  Enable interrupt acknowledge
PC «VAD Transfer vector address to PC
IEN <0 Disable further interrupts

Go to fetch next instruction

The CPU pushes the return address from PC into the stack. It then acknowl-
edges the interrupt by enabling the INTACK line. The priority interrupt unit
responds by placing a unique interrupt vector into the CPU data bus. The CPU
transfers the vector address into PC and clears IEN prior to going to the next
fetch phase. The instruction read from memory during the next fetch phase will
be the one located at the vector address.

Software Routines

A priority interrupt system is a combination of hardware and software tech-
niques. So far we have discussed the hardware aspects of a priority interrupt
system. The computer must also have software routines for servicing the
interrupt requests and for controlling the interrupt hardware registers.
Figure 11-15 shows the programs that must reside in memory for handling the

Figure 11-15 Programs stored in memory for servicing interrupts.

Address
Memory 1/0 service programs
0 JMP DISK DISK —> Program to service
magnetic disk
1 JMP PTR
2 JMPRDR PTR — Program to service
fine printer
3 JMP KBD
Main program
RDR — Program to service
character reader
750 —
KBD —> Program to service
keyboard
Stack 256 —>

256
750
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service program

interrupt system. Each device has its own service program that can be reached
through a jump (JMP) instruction stored at the assigned vector address. The
symbolic name of each routine represents the starting address of the service
program. The stack shown in the diagram is used for storing the return address
after each interrupt.

To illustrate with a specific example assume that the keyboard sets its
interrupt bit while the CPU is executing the instruction in location 749 of the
main program. At the end of the instruction cycle, the computer goes to an
interrupt cycle. It stores the return address 750 in the stack and then accepts
the vector address 00000011 from the bus and transfers it to PC. The instruction
inlocation 3 is executed next, resulting in transfer of control to the KBD routine.
Now suppose that the disk sets its interrupt bit when the CPU is executing the
instruction at address 255 in the KBD program. Address 256 is pushed into the
stack and control is transferred to the DISK service program. The last instruc-
tion in each routine is a return from interrupt instruction. When the disk
service program is completed, the return instruction pops the stack and places
256 into PC. This returns control to the KBD routine to continue servicing the
keyboard. At the end of the KBD program, the last instruction pops the stack
and returns control to the main program at address 750. Thus, a higher-priority
device can interrupt a lower-priority device. It is assumed that the time spent
in servicing the high-priority interrupt is short compared to the transfer rate
of the low-priority device so that no loss of information takes place.

Initial and Final Operations

Each interrupt service routine must have an initial and final set of operations
for controlling the registers in the hardware interrupt system. Remember that
the interrupt enable IEN is cleared at the end of an interrupt cycle. This flip-flop
must be set again to enable higher-priority interrupt requests, but not before
lower-priority interrupts are disabled. The initial sequence of each interrupt
service routine must have instructions to control the interrupt hardware in the
following manner:

1. Clear lower-level mask register bits.
2. Clear interrupt status bit IST.

3. Save contents of processor registers.
4. Set interrupt enable bit IEN.

5. Proceed with service routine.

The lower-level mask register bits (including the bit of the source that
interrupted) are cleared to prevent these conditions from enabling the inter-
rupt. Although lower-priority interrupt sources are assigned to higher-num-
bered bits in the mask register, priority can be changed if desired since the
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programmer can use any bit configuration for the mask register. The interrupt
status bit must be cleared so it can be set again when a higher-priority interrupt
occurs. The contents of processor registers are saved because they may be
needed by the program that has been interrupted after control returns to it. The
interrupt enable IEN is then set to allow other (higher-priority) interrupts and
the computer proceeds to service the interrupt request.

The final sequence in each interrupt service routine must have instruc-
tions to control the interrupt hardware in the following manner:

1. Clear interrupt enable bit IEN.
2. Restore contents of processor registers.

3. Clear the bit in the interrupt register belonging to the source that has
been serviced.

4. Set lower-level priority bits in the mask register.
5. Restore return address into PC and set IEN.

The bit in the interrupt register belonging to the source of the interrupt
must be cleared so that it will be available again for the source to interrupt. The
lower-priority bits in the mask register (including the bit of the source being
interrupted) are set so they can enable the interrupt. The return to the inter-
rupted program is accomplished by restoring the return address to PC. Note
that the hardware must be designed so that no interrupts occur while executing
steps 2 through 5; otherwise, the return address may be lost and the informa-
tion in the mask and processor registers may be ambiguous if an interrupt
is acknowledged while executing the operations in these steps. For this reason
IEN is initially cleared and then set after the return address is transferred into
PC.

The initial and final operations listed above are referred to as overhead
operations or housekeeping chores. They are not part of the service program
proper but are essential for processing interrupts. All overhead operations can
be implemented by software. This is done by inserting the proper instructions
at the beginning and at the end of each service routine. Some of the overhead
operations can be done automatically by the hardware. The contents of proces-
sor registers can be pushed into a stack by the hardware before branching to
the service routine. Other initial and final operations can be assigned to the
hardware. In this way, it is possible to reduce the time between receipt of an
interruptand the execution of the instructions that service the interrupt source.

11-6 Direct Memory Access (DMA)

The transfer of data between a fast storage device such as magnetic disk and
memory is often limited by the speed of the CPU. Removing the CPU from the
path and letting the peripheral device manage the memory buses directly
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Figure 11-19 Block diagram of a computer with I/O processor.

The data formats of peripheral devices differ from memory and CPU data
formats. The IOP must structure data words from many different sources. For
example, it may be necessary to take four bytes from an input device and pack
them into one 32-bit word before the transfer to memory. Data are gathered
in the IOP at the device rate and bit capacity while the CPU is executing its own
program. After the input data are assembled into a memory word, they are
transferred from IOP directly into memory by “’stealing” one memory cycle
from the CPU. Similarly, an output word transferred from memory to the IOP
is directed from the IOP to the output device at the device rate and bit capacity.

The communication between the IOP and the devices attached to it is
similar to the program control method of transfer. Communication with the
memory is similar to the direct memory access method. The way by which the
CPU and IOP communicate depends on the level of sophistication included in
the system. In very-large-scale computers, each processor is independent of
all others and any one processor can initiate an operation. In most computer
systems, the CPU is the master while the IOP is a slave processor. The CPU
is assigned the task of initiating all operations, but /O instructions are executed
in the IOP. CPU instructions provide operations to start an /O transfer and also
to test /O status conditions needed for making decisions on various /O
activities. The IOP, in turn, typically asks for CPU attention by means of an
interrupt. It also responds to CPU requests by placing a status word in a
prescribed location in memory to be examined later by a CPU program. When
an /O operation is desired, the CPU informs the IOP where to find the /O
program and then leaves the transfer details to the IOP.

Instructions that are read from memory by an IOP are sometimes called
commands, to distinguish them from instructions that are read by the CPU.
Otherwise, an instruction and a command have similar functions. Commands
are prepared by experienced programmers and are stored in memory. The
command words constitute the program for the IOP. The CPU informs the IOP
where to find the commands in memory when it is time to execute the /O
program.
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CPU-IOP Communication
The communication between CPU and IOP may take different forms, depend-
ing on the particular computer considered. In most cases the memory unit acts
as a message center where each processor leaves information for the other. To
appreciate the operation of a typical IOP, we will illustrate by a specific example
the method by which the CPU and IOP communicate. This is a simplified
example that omits many operating details in order to provide an overview of
basic concepts.

The sequence of operations may be carried out as shown in the flowchart
of Fig. 11-20. The CPU sends an instruction to test the IOP path. The IOP

Figure 11.20 CPU-IOP communication.
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responds by inserting a status word in memory for the CPU to check. The bits
of the status word indicate the condition of the IOP and /O device, such as
IOP overload condition, device busy with another transfer, or device ready for
I/O transfer. The CPU refers to the status word in memory to decide what to
do next. If all is in order, the CPU sends the instruction to start /O transfer.
The memory address received with this instruction tells the IOP where to find
its program.

The CPU can now continue with another program while the IOP is busy
with the /O program. Both programs refer to memory by means of DMA
transfer. When the IOP terminates the execution of its program, it sends an
interrupt request to the CPU. The CPU responds to the interrupt by issuing
an instruction to read the status from the IOP. The IOP responds by placing
the contents of its status report into a specified memory location. The status
word indicates whether the transfer has been completed or if any errors
occurred during the transfer. From inspection of the bits in the status word,
the CPU determines if the I/O operation was completed satisfactorily without
errors.

The IOP takes care of all data transfers between several /O units and the
memory while the CPU is processing another program. The IOP and CPU are
competing for the use of memory, so the number of devices that can be in
operation is limited by the access time of the memory. It is not possible to
saturate the memory by /O devices in most systems, as the speed of most
devices is much slower than the CPU. However, some very fast units, such as
magnetic disks, can use an appreciable number of the available memory cycles.
In that case, the speed of the CPU may deteriorate because it will often have
to wait for the IOP to conduct memory transfers.

IBM 370 /O Channel
The I/O processor in the IBM 370 computer is called a channel. A typical
computer system configuration includes a number of channels with each
channel attached to one or more I/O devices. There are three types of channels:
multiplexer, selector, and block-multiplexer. The multiplexer channel can be
connected to a number of slow- and medium-speed devices and is capable of
operating with a number of I/O devices simultaneously. The selector channel
is designed to handle one I/O operation at a time and is normally used to
control one high-speed device. The block-multiplexer channel combines the
features of both the multiplexer and selector channels. It provides a connection
to a number of high-speed devices, but all /O transfers are conducted with an
entire block of data as compared to a multiplexer channel, which can transfer
only one byte at a time.

The CPU communicates directly with the channels through dedicated
control lines and indirectly through reserved storage areas in memory.
Figure 11-21 shows the word formats associated with the channel operation.
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(a) 1/O instruction format
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(b) Channel status word format
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(¢) Channel command word format

Figure 11-21 IBM 370 I/O related word formats.

The I/O instruction format has three fields: operation code, channel address,
and device address. The computer system may have a number of channels, and
each is assigned an address. Similarly, each channel may be connected to
several devices and each device is assigned an address. The operation code
specifies one of eight /O instructions: start I/O, start I/O fast release, test /O,
clear /O, halt I/O, halt device, test channel, and store channel identification.
The addressed channel responds to each of the /O instructions and executes
it. It also sets one of four condition codes in a processor register called PSW
(processor status word). The CPU can check the condition code in the PSW to
determine the result of the I/O operation. The meaning of the four condition
codes is different for each I/O instruction. But, in general, they specify whether
the channel or the device is busy, whether or not it is operational, whether
interruptions are pending, if the /O operation had started successfully, and
whether a status word was stored in memory by the channel.

The format of the channel status word is shown in Fig. 11-21(b). It is
always stored in location 64 in memory. The key field is a protection mechanism
used to prevent unauthorized access by one user to information that belongs
toanother user or to the operating system. The address field in the status word
gives the address of the last command word used by the channel. The count
field gives the residual count when the transfer was terminated. The count field
will show zero if the transfer was completed successfully. The status field
identifies the conditions in the device and the channel and any errors that
occurred during the transfer.

The difference between the start /O and start /O fast release instructions
is that the latter requires less CPU time for its execution. When the channel
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receives one of these two instructions, it refers to memory location 72 for the
address of the first channel command word (CCW). The format of the channel
command word is shown in Fig. 11-21(c). The data address field specifies the
first address of a memory buffer and the count field gives the number of bytes
involved in the transfer. The command field specifies an /O operation and the
flag bits provide additional information for the channel. The command field
corresponds to an operation code that specifies one of six basic types of VO
operations:

1. Write. Transfer data from memory to /O device.

2. Read. Transfer data from /O device to memory.

3. Read backwards. Read magnetic tape with tape moving backward.

4. Control. Used to initiate an operation not involving transfer of data, such
as rewinding of tape or positioning a disk-access mechanism.

5. Sense. Informs the channel to transfer its channel status word to
memory location 64.

6. Transfer in channel. Used instead of a jump instruction. Here the data
address field specifies the address of the next command word to be
executed by the channel.

An example of a channel program is shown in Table 11-3. It consists of
three command words. The first causes a transfer into a magnetic tape of 60
bytes from memory starting at address 4000. The next two command words
perform a similar function with a different portion of memory and byte count.
The six flags in each control word specify certain interrelations between the
command words. The first flag is set to 1 in the first command word to specify
“data chaining.” It results in combining the 60 bytes from the first command
word with the 20 bytes of its successor into one record of 80 bytes. The 80 bytes
are written on tape without any separation or gaps even though two memory
sections were used. The second flag is set to 1 in the second command word
to specify “command chaining.” It informs the channel that the next command
word will use the same /O device, in this case, the tape. The channel informs
the tape unit to start inserting a record gap on the tape and proceeds to read
the next command word from memory. The 40 bytes of the third command

TABLE 11-3 IBM-370 Channel Program Example

Command Address Flags Count

Write tape 4000 100000 60
Write tape 6000 010000 20
Write tape 3000 000000 40
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word are then written on tape as a separate record. When all the flags are equal
to zero, it signifies the end of /O operations for the particular I/O device.
A memory map showing all pertinent information for /O processing is
illustrated in Fig. 11-22. The operation begins when the CPU program encoun-
ters a start /O instruction. The IOP then goes to memory location 72 to obtain
a channel address word. This word contains the starting address of the /O
channel program. The channel then proceeds to execute the program specified
by the channel command words. The channel constructs a status word during

Figure 11-22 Location of information in memory for /O operations in the
IBM 370.
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the transfer and stores it in location 64. Upon interruption, the CPU can refer
to memory location 64 for the status word.

Intel 8089 10P

The Intel 8089 I/O processor is contained in a 40-pin integrated circuit package.
Within the 8089 are two independent units called channels. Each channel
combines the general characteristics of a processor unit with those of a direct
memory access controller. The 8089 is designed to function as an IOP in a
microcomputer system where the Intel 8086 microprocessor is used as the
CPU. The 8086 CPU initiates an I/O operation by building a message in memory
that describes the function to be performed. The 8089 IOP reads the message
from memory, carries out the operation, and notifies the CPU when it has
finished.

In contrast to the IBM 370 channel, which has only six basic /O com-
mands, the 8089 IOP has 50 basic instructions that can operate on individual
bits, on bytes, or 16-bit words. The IOP can execute programs in a manner
similar to a CPU except that the instruction set is specifically chosen to provide
efficient input—output processing. The instruction set includes general data
transfer instructions, basic arithmetic and logic operations, conditional and
unconditional branch operations, and subroutine call and return capabilities.
The set also includes special instructions to initiate DMA transfers and issue
an interrupt request to the CPU. It provides efficient data transfer between any
two components attached to the system bus, such as /O to memory, memory
to memory, or VO to I/O.

A microcomputer system using the Intel 8086/8089 pair of integrated
circuits is shown in Fig. 11-23. The 8086 functions as the CPU and the 8089 as
the IOP. The two units share a common memory through a bus controller
connected to a system bus, which is called a “multibus” by Intel. The IOP uses
a local bus to communicate with various interface units connected to /O
devices. The CPU communicates with the IOP by enabling the channel attention
line. The select line is used by the CPU to select one of two channels in the 8089.
The IOP gets the attention of the CPU by sending an interrupt request.

The CPU and IOP communicate with each other by writing messages for
one another in system memory. The CPU prepares the message area and
signals the IOP by enabling the channel attention line. The IOP reads the
message, performs the required /O functions, and executes the appropriate
channel program. When the channel has completed its program, it issues an
interrupt request to the CPU.

The communication scheme consists of program sections called “‘blocks,”’
which are stored in memory as shown in Fig. 11-24. Each block contains control
and parameter information as well as an address pointer to its successor block.
The address of the control block is passed to each IOP channel during initial-
ization. The busy flag indicates whether the IOP is busy or ready to perform
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Figure 11-23 Intel 8086/8089 microcomputer system block diagram.
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Figure 11-24 Location of information in memory for /O operations in the
Intel 8086/8089 microcomputer system.

a new /O operation. The CCW (channel command word) is specified by the
CPU to indicate the type of operation required from the IOP. The CCW in the
8089 does not have the same meaning as the command word in the IBM
channel. The CCW here is more like an /O instruction that specifies an
operation for the IOP, such as start operation, suspend operation, resume
operation, and halt /O program. The parameter block contains variable data
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that the IOP program must use in carrying out its task. The task block contains
the actual program to be executed in the IOP.

The CPU and IOP work together through the control and parameter
blocks. The CPU obtains use of the shared memory after checking the busy flag
to ensure that the IOP is available. The CPU then fills in the information in the
parameter block and writes a “start operation” command in the CCW. After
the communication blocks have been set up, the CPU enables the channel
attention signal to inform the IOP to start its /O operation. The CPU then
continues with another program. The IOP responds to the channel attention
signal by placing the address of the control block into its program counter. The
IOP refers to the control block and sets the busy flag. It then checks the
operation in the CCW. The PB (parameter block) address and TB (task block)
address are then transferred into internal IOP registers. The IOP starts execut-
ing the program in the task block using the information in the parameter block.
The entries in the parameter block depend on the /O device. The parameters
listed in Fig. 11-24 are suitable for data transfer to or from a magnetic disk. The
memory address specifies the beginning address of a memory buffer. The byte
count gives the number of bytes to be transferred. The device address specifies
the particular I/O device to be used. The track and sector numbers locate the
data on the disk. When the I/O operation is completed, the IOP stores its status
bits in the status word location of the parameter block and interrupts the CPU.
The CPU can refer to the status word to check if the transfer has been com-
pleted satisfactorily. )

11-8 Serial Communication

A data communication processor is an I/O processor that distributes and
collects data from many remote terminals connected through telephone and
other communication lines. It is a specialized I/O processor designed to com-
municate directly with data communication networks. A communication
network may consist of any of a wide variety of devices, such as printers,
interactive display devices, digital sensors, or a remote computing facility.
With the use of a data communication processor, the computer can service
fragments of each network demand in an interspersed manner and thus have
the apparent behavior of serving many users at once. In this way the computer
is able to operate efficiently in a time-sharing environment.

The most striking difference between an I/O processor and a data commu-
nication processor is in the way the processor communicates with the /O
devices. An I/O processor communicates with the peripherals through a com-
mon I/O bus that is comprised of many data and control lines. All peripherals
share the common bus and use it to transfer information to and from the VO
processor. A data communication processor communicates with each terminal
through a single pair of wires. Both data and control information are trans-
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12-1 Memory Hierarchy

The memory unit is an essential component in any digital computer since it is
needed for storing programs and data. A very small computer with a limited
application may be able to fulfill its intended task without the need of addi-
tional storage capacity. Most general-purpose computers would run more
efficiently if they were equipped with additional storage beyond the capacity
of the main memory. There is just not enough space in one memory unit to
accommodate all the programs used in a typical computer. Moreover, most
computer users accumulate and continue to acc large its of
data-processing software. Not all accumulated information is needed by the
processor at the same time. Therefore, it is more economical to use low-cost
storage devices to serve as a backup for storing the information that is not
currently used by the CPU. The memory unit that communicates directly with
the CPU is called the main memory. Devices that provide backup storage are
ca!bdau.nharymmry The most common auxiliary memory devices used in
comp systems are tic disks and tapes. They are used for storing
system programs, ]argedam files, and other backup information. Only pro-
grams and data currently needed by the processor reside in main memory. All

445
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cache memory

other information is stored in auxiliary yand t ferred to main mem-
ory when needed.

The total memory capacity of a computer can be visualized as being a
hierarchy of components. The memory hierarchy system consists of all storage
devices employed in a computer system from the slow but high-capacity
auxiliary memory to a relatively faster main memory, to an even smaller and
faster cache memory accessible to the high-speed processing logic. Figure 12-1
illustrates the components in a typical memory hierarchy. At the bottom of the
hierarchy are the relatively slow magnetic tapes used to store removable files.
Next are the magnetic disks used as backup storage. The main memory occu-
pies a central position by being able to communicate directly with the CPU and
with auxiliary memory devices through an 'O processor. When programs not
residing in main memory are needed by the CPU, they are brought in from
auxiliary memory. Programs not currently needed in main memory are trans-
ferred into auxiliary memory to provide space for currently used programs and
data.

A special very-high-speed memory called a cache is sometimes used to
increase the speed of processing by making current programs and data avail-
able to the CPU at a rapid rate. The cache memory is employed in computer
systems to compensate for the speed differential between main memory access
time and processor logic. CPU logic is usually faster than main memory access
time, with the result that processing speed is limited primarily by the speed
of main memory. A technique used to comp for the mismatch in oper-
ating speeds is to employ an extremely fast, small cache between the CPU and
main memory whose access time is close to processor logic clock cycle time.
The cache is used for storing segments of programs currently being executed
in the CPU and temporary data frequently needed in the present calculations.

Figure 12-1 Memory hierarchy in a computer system.
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By making programs and data available at a rapid rate, it is possible to increase
the performance rate of the computer.

While the /O processor manages data transfers between auxiliary mem-
ory and main memory, the cache organization is concerned with the transfer
of information between main memory and CPU. Thus each is involved with
a different level in the memory hierarchy system. The reason for having two
or three levels of memory hierarchy is economics. As the storage capacity of
the memory increases, the cost per bit for storing binary information decreases
and the access time of the memory becomes longer. The auxiliary memory has
a large storage capacity, is relatively inexpensive, but has low access speed
compared to main memory. The cache memory is very small, relatively expen-
sive, and has very high access speed. Thus as the memory access speed
increases, so does its relative cost. The overall goal of using a memory hierarchy
is to obtain the highest-possible average access speed while minimizing the
total cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The cache
holds those parts of the program and data that are most heavily used, while
the auxiliary memory holds those parts that are not presently used by the CPU.
Moreover, the CPU has direct access to both cache and main memory but not
to auxiliary memory. The transfer from auxiliary to main memory is usually
done by means of direct memory access of large blocks of data. The typical
access time ratio between cache and main memory is about 1 to 7. For example,
a typical cache memory may have an access time of 100 ns, while main memory
access time may be 700 ns. Auxiliary memory average access time is usually
1000 times that of main memory. Block size in auxiliary memory typically
ranges from 256 to 2048 words, while cache block size is typically from 1 to 16
words.

Many operating systems are designed to enable the CPU to process a
number of independent programs concurrently. This concept, called multipro-
gramming, refers to the existence of two or more programs in different parts
of the memory hierarchy at the same time. In this way it is possible to keep
all parts of the computer busy by working with several programs in sequence.
For example, suppose that a program is being executed in the CPU and an /O
transfer is required. The CPU initiates the /O processor to start executing the
transfer. This leaves the CPU free to execute another program. In a multipro-
gramming system, when one program is waiting for input or output transfer,
there is another program ready to utilize the CPU.

With multiprogramming the need arises for running partial programs, for
varying the amount of main memory in use by a given program, and for
moving programs around the memory hierarchy. Computer programs are
sometimes too long to be accommodated in the total space available in main
memory. Moreover, a computer system uses many programs and all the
programs cannot reside in main memory at all times. A program with its data
normally resides in auxiliary memory. When the program or a segment of the
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program is to be executed, it is transferred to main memory to be executed by
the CPU. Thus one may think of auxiliary memory as containing the totality
of information stored in a computer system. It is the task of the operating
system to maintain in main memory a portion of this information that is
currently active. The part of the computer system that supervises the flow of
information between auxiliary memory and main memory is called the memory
management system. The hardware for a memory management system is pre-
sented in Sec. 12-7.

12-2 Main Memory

The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory used to store programs and data during the
computer operation. The principal technology used for the main memory is
based on semiconductor integrated circuits. Integrated circuit RAM chips are
available in two possible operating modes, static and dynamic. The static RAM
consists essentially of internal flip-flops that store the binary information. The
stored information remains valid as long as power is applied to the unit. The
dynamic RAM stores the binary information in the form of electric charges that
are applied to capacitors. The capacitors are provided inside the chip by MOS
transistors. The stored charge on the capacitors tend to discharge with time and
the capacitors must be periodically recharged by refreshing the dynamic mem-
ory. Refreshing is done by cycling through the words every few milliseconds
to restore the decaying charge. The dynamic RAM offers reduced power
consumption and larger storage capacity in a single memory chip. The static
RAM is easier to use and has shorter read and write cycles.

Most of the main memory in a general-purpose computer is made up of
RAM integrated circuit chips, but a portion of the memory may be constructed
with ROM chips. Originally, RAM was used to refer to a random-access
memory, but now it is used to designate a read/write memory to distinguish
it from aread-only memory, although ROM is also random access. RAM is used
for storing the bulk of the programs and data that are subject to change. ROM
is used for storing programs that are permanently resident in the computer and
for tables of constants that do not change in value once the production of the
computer is completed.

Among other things, the ROM portion of main memory is needed for
storing an initial program called a bootstrap loader. The bootstrap loader is a
program whose function is to start the computer software operating when
power is turned on. Since RAM is volatile, its contents are destroyed when
power is turned off. The contents of ROM remain unchanged after power is
turned off and on again. The startup of a computer consists of turning the
power on and starting the execution of an initial program. Thus when power
is turned on, the hardware of the computer sets the program counter to the
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first address of the bootstrap loader. The bootstrap program loads a portion
of the operating system from disk to main memory and control is then trans-
ferred to the operating system, which prepares the computer for general use.

RAM and ROM chips are available in a variety of sizes. If the memory
needed for the computer is larger than the capacity of one chip, it is necessary
to combine a number of chips to form the required memory size. To demon-
strate the chip interconnection, we will show an example of a 1024 X 8 memory
constructed with 128 X 8 RAM chips and 512 X 8 ROM chips.

RAM and ROM Chips
A RAM chip is better suited for communication with the CPU if it has one or
more control inputs that select the chip only when needed. Another common
feature is a bidirectional data bus that allows the transfer of data either from
memory to CPU during a read operation, or from CPU to memory during a
write operation. A bidirectional bus can be constructed with three-state
buffers. A three-state buffer output can be placed in one of three possible
states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a high-
impedance state. The logic 1 and 0 are normal digital signals. The high-
impedance state behaves like an open circuit, which means that the output
does not carry a signal and has no logic significance.

The block diagram of a RAM chip is shown in Fig. 12-2. The capacity of
the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit

Figure 12-2 Typical RAM chip.

Chip select | em—={ CS|
Chip select 2 =mmmm{ CS2
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Read === RD RAM [tm—p— 8-bit data bus
Write === WR
7-bit address =——— AD7
(a) Block diagram
CSI CS2 RD WR |Memory function State of data bus
0 0 x x Inhibit High-impedance
0 1 X X Inhibit High-impedance
1 0 0 O Inhibit High-impedance
1 0 0 1 Write Input data to RAM
I 0 I x Read Output data from RAM
| I x X Inhibit High-impedance

(b) Function table
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address and an 8-bit bidirectional data bus. The read and write inputs speci-
the memory operation and the two chips select (CS) control inputs are fc:
enabling the chip only when it is selected by the microprocessor. The availab: -
ity of more than one control input to select the chip facilitates the decoding c:
the address lines when multiple chips are used in the microcomputer. The reac
and write inputs are sometimes combined into one line labeled R/W. When the
chip is selected, the two binary states in this line specify the two operations
of read or write.

The function table listed in Fig. 12-2(b) specifies the operation of the RAM
chip. The unit is in operation only when CS1 = 1and CS2 = 0. The bar on top
of the second select variable indicates that this input is enabled when it is equa.
to 0. If the chip select inputs are not enabled, or if they are enabled but the read
or write inputs are not enabled, the memory is inhibited and its data bus is in
a high-impedance state. When CS1 = 1 and CS2 = 0, the memory can be
placed in a write or read mode. When the WR input is enabled, the memory
stores a byte from the data bus into a location specified by the address input
lines. When the RD input is enabled, the content of the selected byte is placed
into the data bus. The RD and WR signals control the memory operation as well
as the bus buffers associated with the bidirectional data bus.

A ROM chip is organized externally in a similar manner. However, since
a ROM can only read, the data bus can only be in an output mode. The block
diagram of a ROM chip is shown in Fig. 12-3. For the same-size chip, it is
possible to have more bits of ROM than of RAM, because the internal binary
cells in ROM occupy less space than in RAM. For this reason, the diagram
specifies a 512-byte ROM, while the RAM has only 128 bytes.

The nine address lines in the ROM chip specify any one of the 512 bytes
stored in it. The two chip select inputs must be CS1 = 1 and C52 = 0 for the

‘unit to operate. Otherwise, the data bus is in a high-impedance state. There

is no need for a read or write control because the unit can only read. Thus when
the chip is enabled by the two select inputs, the byte selected by the address
lines appears on the data bus.

Memory Address Map

The designer of a computer system must calculate the amount of memory
required for the particular application and assign it to either RAM or ROM. The
interconnection between memory and processor is then established from
knowledge of the size of memory needed and the type of RAM and ROM chips
available. The addressing of memory can be established by means of a table
that specifies the memory address assigned to each chip. The table, called a
memory address map, is a pictorial representation of assigned address space for
each chip in the system.

To demonstrate with a particular example, assume that a computer sys-
tem needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM chips



SECTION 122 Main Memory 451

Chip seleCt | emmmd CS]
Chip select 2 s\ cs2
512X8 pemmeep— 8-bit data bus

ROM
9-bit address e AD9

Figure 12-3 Typical ROM chip.

to be used are specified in Figs. 12-2 and 12-3. The memory address map for
this configuration is shown in Table 12-1. The component column specifies
whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The address
bus lines are listed in the third column. Although there are 16 lines in the
address bus, the table shows only 10 lines because the other 6 are not used in
this example and are assumed to be zero. The small x's under the address bus
lines designate those lines that must be connected to the address inputs in each
chip. The RAM chips have 128 bytes and need seven address lines. The ROM
chip has 512 bytes and needs 9 address lines. The x’s are always assigned to
the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9
for the ROM. It is now necessary to distinguish between four RAM chips by
assigning to each a different address. For this particular example we choose bus
lines 8 and 9 to represent four distinct binary combinations. Note that any other
pair of unused bus lines can be chosen for this purpose. The table clearly shows
that the nine low-order bus lines constitute a memory space for RAM equal to
2° = 512 bytes. The distinction between a RAM and ROM address is done with
another bus line. Here we choose line 10 for this purpose. When line 10 is 0,
the CPU selects a RAM, and when this line is equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from the
information under the address bus assignment. The address bus lines are

TABLE 12-1 Memory Address Map for Microprocomputer

Address bus
Hexadecimal
Component address 10 9 8 765 4 3 21
RAM 1 0000-007F [} 0 x x x X X X X
RAM 2 0080-00FF 0 0 1 x x X X X x X
RAM 3 0100-017F 01 0 x x x X X X X
RAM 4 0180-01FF 01 1 x x x X X X X
ROM 0200-03FF 1 x X X X X X X X X
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subdivided into groups of four bits each so that each group can be represented
with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16
and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines
11 and 12 are always 0. The range of hexadecimal addresses for each compo-
nent is determined from the x’s associated with it. These x’s represent a binary
number that can range from an all-0’s to an all-1’s value.

Memory Connection to CPU

RAM and ROM chips are connected to a CPU through the data and address
buses. The low-order lines in the address bus select the byte within the chips
and other lines in the address bus select a particular chip through its chip select
inputs. The connection of memory chips to the CPU is shown in Fig. 12-4. This
configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of
ROM. It implements the memory map of Table 12-1. Each RAM receives the
seven low-order bits of the address bus to select one of 128 possible bytes. The
particular RAM chip selected is determined from lines 8 and 9 in the address
bus. This is done through a 2 X 4 decoder whose outputs go to the CS1 inputs
in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first
RAM chip is selected. When 01, the second RAM chip is selected, and so on.
The RD and WR outputs from the microprocessor are applied to the inputs of
each RAM chip.

The selection between RAM and ROM is achieved through bus line 10.
The RAMs are selected when the bit in this line is 0, and the ROM when the
bit is 1. The other chip select input in the ROM is connected to the RD control
line for the ROM chip to be enabled only during a read operation. Address bus
lines 1to 9 are applied to the input address of ROM without going through the
decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The
data bus of the ROM has only an output capability, whereas the data bus
connected to the RAMs can transfer information in both directions.

The example just shown gives an indication of the interconnection com-
plexity that can exist between memory chips and the CPU. The more chips that
are connected, the more external decoders are required for selection among the
chips. The designer must establish a memory map that assigns addresses to
the various chips from which the required connections are determined.

12-3 Auxiliary Memory

The most common auxiliary memory devices used in computer systems are
magnetic disks and tapes. Other components used, but not as frequently, are
magnetic drums, magnetic bubble memory, and optical disks. To understand
fully the physical mechanism of auxiliary memory devices one must have a
knowledge of magnetics, electronics, and electromechanical systems. Al-
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though the physical properties of these storage devices can be quite complex,
their logical properties can be characterized and compared by a few parame-
ters. The important characteristics of any device are its access mode, access
time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and
obtain its contents is called the access time. In electromechanical devices with
moving parts such as disks and tapes, the access time consists of a seek time
required to position the read-write head to a location and a transfer time
required to transfer data to or from the device. Because the seek time is usually
much longer than the transfer time, auxiliary storage is organized in records
or blocks. A record is a specified number of characters or words. Reading or
writing is always done on entire records. The transfer rate is the number of
characters or words that the device can transfer per second, after it has been
positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist of
high-speed rotating surfaces coated with a magnetic recording medium. The
rotating surface of the drumis a cylinder and that of the disk, a round flat plate.
The recording surface rotates at uniform speed and is not started or stopped
during access operations. Bits are recorded as magnetic spots on the surface
as it passes a stationary mechanism called a write head. Stored bits are detected
by a change in magnetic field produced by a recorded spot on the surface as
it passes through a read head. The amount of surface available for recording in
a disk is greater than in a drum of equal physical size. Therefore, more
information can be stored on a disk than on a drum of comparable size. For
this reason, disks have replaced drums in more recent computers.

Magnetic Disks

A magnetic disk is a circular plate constructed of metal or plastic coated with
magnetized material. Often both sides of the disk are used and several disks
may be stacked on one spindle with read/write heads available on each surface.
All disks rotate together at high speed and are not stopped or started for access
purposes. Bits are stored in the magnetized surface in spots along concentric
circles called tracks. The tracks are commonly divided into sections called
sectors. In most systems, the minimum quantity of information which can be
transferred is a sector. The subdivision of one disk surface into tracks and
sectors is shown in Fig. 12-5.

Some units use a single read/write head for each disk surface. In this type
of unit, the track address bits are used by a mechanical assembly to move the
head into the specified track position before reading or writing. In other disk
systems, separate read/write heads are provided for each track in each surface.
The address bits can then select a particular track electronically through a
decoder circuit. This type of unit is more expensive and is found only in very
large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and



SECTION 12.3 Auxiliary Memory 455

Tracks

<\Seclg,\>/

Read/write
head
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recognize the sectors. A disk system is addressed by address bits that specify
the disk number, the disk surface, the sector number and the track within the
sector. After the read/write heads are positioned in the specified track, the
system has to wait until the rotating disk reaches the specified sector under the
read/write head. Information transfer is very fast once the beginning of a sector
has been reached. Disks may have multiple heads and simultaneous transfer
of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track near
the center of the disk. If bits are recorded with equal density, some tracks will
contain more recorded bits than others. To make all the records in a sector of
equal length, some disks use a variable recording density with higher density
on tracks near the center than on tracks near the circumference. This equalizes
the number of bits on all tracks of a given sector.

Disks that are permanently attached to the unit assembly and cannot be
removed by the occasional user are called hard disks. A disk drive with remov-
able disks is called a floppy disk. The disks used with a floppy disk drive are
small removable disks made of plastic coated with magnetic recording material.
There are two sizes commonly used, with diameters of 5.25 and 3.5 inches. The
3.5-inch disks are smaller and can store more data than can the 5.25-inch disks.
Floppy disks are extensively used in personal computers as a medium for
distributing software to computer users.

Magnetic Tape

A magnetic tape transport consists of the electrical, mechanical, and electronic
components to provide the parts and control mechanism for a magnetic-tape
unit. The tape itself is a strip of plastic coated with a magnetic recording
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content addressable
memory

medium. Bits are recorded as magnetic spots on the tape along several tracks.
Usually, seven or nine bits are recorded simultaneously to form a character
together with a parity bit. Read/write heads are mounted one in each track so
that data can be recorded and read as a sequence of characters.

Magnetic tape units can be stopped, started to move forward or in re-
verse, or can be rewound. However, they cannot be started or stopped fast
enough between individual characters. For this reason, information is recorded
in blocks referred to as records. Gaps of unrecorded tape are inserted between
records where the tape can be stopped. The tape starts moving while in a gap
and attains its constant speed by the time it reaches the next record. Each
record on tape has an identification bit pattern at the beginning and end. By
reading the bit pattern at the beginning, the tape control identifies the record
number. By reading the bit pattern at the end of the record, the control
recognizes the beginning of a gap. A tape unit is addressed by specifying the
record number and the number of characters in the record. Records may be of
fixed or variable length.

12-4 Associative Memory

Many data-processing applications require the search of items in a table stored
in memory. An assembler program searches the symbol address table in order
to extract the symbol’s binary equivalent. An account number may be searched
in a file to determine the holder's name and account status. The established
way to search a table is to store all items where they can be addressed in
sequence. The search procedure is a strategy for choosing a sequence of
addresses, reading the content of memory at each address, and comparing the
information read with the item being searched until a match occurs. The
number of accesses to memory depends on the location of the item and the
efficiency of the search algorithm. Many search algorithms have been devel-
oped to minimize the number of accesses while searching for an item in a
random or sequential access memory.

The time required to find an item stored in memory can be reduced
considerably if stored data can be identified for access by the content of the data
itself rather than by an address. A memory unit accessed by content is called
an associative memory or content addressable memory (CAM). This type of memory
is accessed simultaneously and in parallel on the basis of data content rather
than by specific address or location. When a word is written in an associative
memory, no address is given. The memory is capable of finding an empty
unused location to store the word. When a word is to be read from an associa-
tive memory, the content of the word, or part of the word, is specified. The
memory locates all words which match the specified content and marks them
for reading.

Because of its organization, the associative memory is uniquely suited to
do parallel searches by data association. Moreover, searches can be done on
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an entire word or on a specific field within a word. An associative memory is
more expensive than a random access memory because each cell must have
storage capability as well as logic circuits for matching its content with an
external argument. For this reason, associative memories are used in applica-
tions where the search time is very critical and must be very short.

Hardware Organization

The block diagram of an associative memory is shown in Fig. 12-6. It consists
of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The
match register M has m bits, one for each memory word. Each word in memory
is compared in parallel with the content of the argument register. The words
that match the bits of the argument register set a corresponding bit in the match
register. After the matching process, those bits in the match register that have
been set indicate the fact that their corresponding words have been matched.
Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in
the argument word. The entire argument is compared with each memory word
if the key register contains all 1’s. Otherwise, only those bits in the argument
that have 1’s in their corresponding position of the key register are compared.
Thus the key provides a mask or identifying piece of information which

Figure 12-6 Block diagram of associative memory.
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specifies how the reference to memory is made. To illustrate with a numericai
example, suppose that the argument register A and the key register K have the
bit configuration shown below. Only the three leftmost bits of A are compared
with memory words because K has 1’s in these positions.

A 101 111100

K 111 000000

Word 1 100 111100 no match
Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

The relation between the memory array and external registers in an
associative memory is shown in Fig. 12-7. The cells in the array are marked by
the letter C with two subcripts. The first subscript gives the word number and
the second specifies the bit position in the word. Thus cell C; is the cell for bit
jin word i. A bit 4; in the argument register is compared with all the bits in
column j of the array provided that K; = 1. This is done for all columns
j=1,2,...,n. If a match occurs between all the unmasked bits of the argu-
ment and the bits in word i, the corresponding bit M; in the match register is
set to 1. If one or more unmasked bits of the argument and the word do not
match, M,; is cleared to 0.

Figure 12-7 Associative memory of m word, n cells per word.
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The internal organization of a typical cell C; is shown in Fig. 12-8. It
consists of a flip-flop storage element F; and the circuits for reading, writing,
and matching the cell. The input bit is transferred into the storage cell during
a write operation. The bit stored is read out during a read operation. The match
logic compares the content of the storage cell with the corresponding un-
masked bit of the argument and provides an output for the decision logic that
sets the bit in M;.

Match Logic

The match logic for each word can be derived from the comparison algorithm
for two binary numbers. First, we neglect the key bits and compare the argu-
ment in A with the bits stored in the cells of the words. Word i is equal to the
argument in A if A; = Fjforj = 1,2,...,n. Two bits are equal if they are both
1 or both 0. The equality of two bits can be expressed logically by the Boolean
function

% = AjF; + A/ F;
where x; = 1 if the pair of bits in position j are equal; otherwise, x; = 0.
For a word i to be equal to the argument in A we must have all x; variables
equal to 1. This is the condition for setting the corresponding match bit M; to
1. The Boolean function for this condition is

M, =xx%3 X,

and constitutes the AND operation of all pairs of matched bits in a word.

Figure 12-8 One cell of associative memory.
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We now include the key bit K; in the comparison logic. The requirement
is that if K; = 0, the corresponding bits of A;and F; need no comparison. Only
when K; = 1 must they be compared. This requirement is achieved by ORing
each term with K;, thus:

-+ K = X lle =1
5+ K [1 if K =0
When K; = 1, we have K/ =0 and x; + 0 = x;. When K; = 0, then K/ = 1 and
x;+1=1 A term (x; + K/) will be in the 1 state if its pair of bits is not
compared. This is necessary because each term is ANDed with all other terms
so that an output of 1 will have no effect. The comparison of the bits has an
effect only when K; = 1.

The match logic for word i in an associative memory can now be expressed
by the following Boolean function:

M; = (x1 + Ki)(x2 + K)(xs + K3) - - - (xa + K;)

Each term in the expression will be equal to 1 if its corresponding K; = 0. If
K; = 1, the term will be either 0 or 1 depending on the value of x;. A match will
occur and M; will be equal to 1 if all terms are equal to 1.

If we substitute the original definition of x;, the Boolean function above
can be expressed as follows:

M = [1(4F + A/Fj + K)
ji=1

where I1is a product symbol designating the AND operation of all n terms. We
need m such functions, one for each word i = 1,2,3,...,m.

The circuit for matching one word is shown in Fig. 12-9. Each cell requires
two AND gates and one OR gate. The inverters for A; and K; are needed once
for each column and are used for all bits in the column. The output of all OR
gates in the cells of the same word go to the input of a common AND gate to
generate the match signal for M;. M; will be logic 1 if a match occurs and 0 if
no match occurs. Note that if the key register contains all 0's, output M; will
be a 1 irrespective of the value of A or the word. This occurrence must be
avoided during normal operation.

Read Operation

If more than one word in memory matches the unmasked argument field, all
the matched words will have 1’s in the corresponding bit position of the match
register. It is then necessary to scan the bits of the match register one at a time.
The matched words are read in sequence by applying aread signal to each word
line whose corresponding M; bit is a 1.
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Figure 12-9 Match logic for one word of associative memory.

In most applications, the associative memory stores a table with no two
identical items under a given key. In this case, only one word may match the
unmasked argument field. By connecting output M; directly to the read line in
the same word position (instead of the M register), the content of the matched
word will be presented automatically at the output lines and no special read
command signal is needed. Furthermore, if we exclude words having a zero
content, an all-zero output will indicate that no match occurred and that the
searched item is not available in memory.

Write Operation

An associative memory must have a write capability for storing the information
to be searched. Writing in an associative memory can take different forms,
depending on the application. If the entire memory is loaded with new infor-
mation at once prior to a search operation then the writing can be done by
addressing each location in sequence. This will make the device'a random-
access memory for writing and a content addressable memory for reading. The
advantage here is that the address for input can be decoded as in a random-
access memory. Thus instead of having m address lines, one for each word in
memory, the number of address lines can be reduced by the decoder tod lines,
where m = 2. ’
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locality of reference

If unwanted words have to be deleted and new words inserted one at a
time, there is a need for a special register to distinguish between active and
inactive words. This register, sometimes called a tag register, would have as
many bits as there are words in the memory. For every active word stored in
memory, the corresponding bit in the tag register is set to 1. A word is deleted
from memory by clearing its tag bit to 0. Words are stored in memory by
scanning the tag register until the first 0 bit is encountered. This gives the first
available inactive word and a position for writing a new word. After the new
word is stored in memory it is made active by setting its tag bit to 1. An
unwanted word when deleted from memory can be cleared to all (’s if this
value is used to specify an empty location. Moreover, the words that have a
tag bit of 0 must be masked (together with the K; bits) with the argument word
so that only active words are compared.

12-5 Cache Memory

Analysis of a large number of typical programs has shown that the references
to memory at any given interval of time tend to be confined within a few
localized areas in memory. This phenomenon is known as the property of
locality of reference. The reason for this property may be understood considering
that a typical computer program flows in a straight-line fashion with program
loops and subroutine calls encountered frequently. When a program loop is
executed, the CPU repeatedly refers to the set of instructions in memory that
constitute the loop. Every time a given subroutine is called, its set of instruc-
tions are fetched from memory. Thus loops and subroutines tend to localize
the references to memory for fetching instructions. To a lesser degree, memory
references to data also tend to be localized. Table-lookup procedures repeat-
edly refer to that portion in memory where the table is stored. Iterative proce-
dures refer to common memory locations and array of numbers are confined
within a local portion of memory. The result of all these observations is the
locality of reference property, which states that over a short interval of time,
the addresses generated by a typical program refer to a few localized areas of
memory repeatedly, while the remainder of memory is accessed relatively
infrequently.

If the active portions of the program and data are placed in a fast small
memory, the average memory access time can be reduced, thus reducing the
total execution time of the program. Such a fast small memory is referred to
as a cache memory. Itis placed between the CPU and main memory as illustrated
in Fig. 12-1. The cache memory access time is less than the access time of main
memory by a factor of 5 to 10. The cache is the fastest component in the memory
hierarchy and approaches the speed of CPU components.

The fundamental idea of cache organization is that by keeping the most
frequently accessed instructions and data in the fast cache memory, the aver-
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age memory access time will approach the access time of the cache. Although
the cache is only a small fraction of the size of main memory, a large fraction
of memory requests will be found in the fast cache memory because of the
locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU needs to
access memory, the cache is examined. If the word is found in the cache, it is
read from the fast memory. If the word addressed by the CPU is not found in
the cache, the main memory is accessed to read the word. A block of words
containing the one just accessed is then transferred from main memory to
cache memory. The block size may vary from one word (the one just accessed)
to about 16 words adjacent to the one just accessed. In this manner, some data
are transferred to cache so that future references to memory find the required
words in the fast cache memory.

The performance of cache memory is frequently measured in terms of a
quantity called hit ratio. When the CPU refers to memory and finds the word
in cache, it is said to produce a hit. If the word is not found in cache, it is in
main memory and it counts as a miss. The ratio of the number of hits divided
by the total CPU references to memory (hits plus misses) is the hit ratio. The
hit ratio is best measured experimentally by running representative programs
in the computer and measuring the number of hits and misses during a given
interval of time. Hit ratios of 0.9 and higher have been reported. This high ratio
verifies the validity of the locality of reference property.

The average memory access time of a computer system can be improved
considerably by use of a cache. If the hit ratio is high enough so that most of
the time the CPU accesses the cache instead of main memory, the average
access time is closer to the access time of the fast cache memory. For example,
a computer with cache access time of 100 ns, a main memory access time of
1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This
is a considerable improvement over a similar computer without a cache mem-
ory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time. Therefore,
very little or no time must be wasted when searching for words in the cache.
The transformation of data from main memory to cache memory is referred to
as a mapping process. Three types of mapping procedures are of practical
interest when considering the organization of cache memory:

1. Associative mapping
2. Direct mapping
3. Set-associative mapping

To help in the discussion of these three mapping procedures we will use a
specific example of a memory organization as shown in Fig. 12-10. The main
memory can store 32K words of 12 bits each. The cache is capable of storing
512 of these words at any given time. For every word stored in cache, there is
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Figure 12-10 Example of cache memory.

a duplicate copy in main memory. The CPU communicates with both memo-
ries. It first sends a 15-bit address to cache. If there is a hit, the CPU accepts
the 12-bit data from cache. If there is a miss, the CPU reads the word from main
memory and the word is then transferred to cache.

Associative Mapping

The fastest and most flexible cache organization uses an associative memory.
This organization is illustrated in Fig. 12-11. The associative memory stores
both the address and content (data) of the memory word. This permits any
location in cache to store any word from main memory. The diagram shows
three words presently stored in the cache. The address value of 15 bits is shown
as a five-digit octal number and its corresponding 12-bit word is shown as a
four-digit octal number. A CPU address of 15 bits is placed in the argument
register and the associative memory is searched for a matching address. If the

Figure 12-11  Associative mapping cache (all numbers in octal).
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address is found, the corresponding 12-bit data is read and sent to the CPU.
If no match occurs, the main memory is accessed for the word. The ad-
dress-data pair is then transferred to the associative cache memory. If the cache
is full, an address—data pair must be displaced to make room for a pair that is
needed and not presently in the cache. The decision as to what pair is replaced
is determined from the replacement algorithm that the designer chooses for the
cache. A simple procedure is to replace cells of the cache in round-robin order
whenever a new word is requested from main memory. This constitutes a
first-in first-out (FIFO) replacement policy.

Direct Mapping

Associative memories are expensive compared to random-access memories
because of the added logic associated with each cell. The possibility of using
a random-access memory for the cache is investigated in Fig. 12-12. The CPU
address of 15 bits is divided into two fields. The nine least significant bits
constitute the index field and the remaining six bits form the tag field. The figure
shows that main memory needs an address that includes both the tag and the
index bits. The number of bits in the index field is equal to the number of
address bits required to access the cache memory.

In the general case, there are 2 words in cache memory and 2" words in
main memory. The n-bit memory address is divided into two fields: k bits for
the index field and n — k bits for the tag field. The direct mapping cache
organization uses the n-bit address to access the main memory and the k-bit
index to access the cache. The internal organization of the words in the cache
memory is as shown in Fig. 12-13(b). Each word in cache consists of the data
word and its associated tag. When a new word is first brought into the cache,
the tag bits are stored alongside the data bits. When the CPU generates a
memory request, the index field is used for the address to access the cache. The

Figure 12-12  Addressing relationships between main and cache memories.
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Memory Index

address Memory data address Tag Data
00000 1220 000 00 1220
00777 2340
01000 3450
01777 4560 7717 02 6710
02000 5670

(b) Cache memory

02777 6710

(a) Main memory

Figure 12-13 Direct mapping cache organization.

tag field of the CPU address is compared with the tag in the word read from
the cache. If the two tags match, there is a hit and the desired data word is in
cache. If there is no match, there is a miss and the required word is read from
main memory. It is then stored in the cache together with the new tag,
replacing the previous value. The disadvantage of direct mapping is that the
hit ratio can drop considerably if two or more words whose addresses have the
same index but different tags are accessed repeatedly. However, this possibility
is minimized by the fact that such words are relatively far apart in the address
range (multiples of 512 locations in this example.)

To see how the direct-mapping organization operates, consider the nu-
merical example shown in Fig. 12-13. The word at address zero is presently
stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the CPU
now wants to access the word at address 02000. The index address is 000, so
it is used to access the cache. The two tags are then compared. The cache tag
is 00 but the address tag is 02, which does not produce a match. Therefore, the
main memory is accessed and the data word 5670 is transferred to the CPU.
The cache word at index address 000 is then replaced with a tag of 02 and data
of 5670.

The direct-mapping example just described uses a block size of one word.
The same organization but using a block size of 8 words is shown in Fig. 12-14.
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Figure 12-14 Direct mapping cache with block size of 8 words.

Theindex field is now divided into two parts: the block field and the word field.
In a 512-word cache there are 64 blocks of 8 words each, since 64 X 8 = 512.
The block number is specified with a 6-bit field and the word within the block
is specified with a 3-bit field. The tag field stored within the cache is common
to all eight words of the same block. Every time a miss occurs, an entire block
of eight words must be transferred from main memory to cache memory.
Although this takes extra time, the hit ratio will most likely improve with a
larger block size because of the sequential nature of computer programs.

Set-Associative Mapping

It was mentioned previously that the disadvantage of direct mapping is that
two words with the same index in their address but with different tag values
cannot reside in cache memory at the same time. A third type of cache organ-
ization, called set-associative mapping, is an improvement over the direct-
mapping organization in that each word of cache can store two or more words
of memory under the same index address. Each data word is stored together
with its tag and the number of tag-data items in one word of cache is said to
form a set. An example of a set-associative cache organization for a set size of
two is shown in Fig. 12-15. Each index address refers to two data words and
their associated tags. Each tag requires six bits and each data word has 12 bits,
so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can
accommodate 512 words. Thus the size of cache memory is 512 X 36. It can
accommodate 1024 words of main memory since each word of cache contains
two data words. In general, a set-associative cache of set size k will accommo-
date k words of main memory in each word of cache.
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Figure 12-15 Two-way set-associative mapping cache.

The octal numbers listed in Fig. 12-15 are with reference to the main
memory contents illustrated in Fig. 12-13(a). The words stored at addresses
01000 and 02000 of main memory are stored in cache memory at index address
000. Similarly, the words at addresses 02777 and 00777 are stored in cache at
index address 777. When the CPU generates a memory request, the index value
of the address is used to access the cache. The tag field of the CPU address is
then compared with both tags in the cache to determine if a match occurs. The
comparison logic is done by an associative search of the tags in the set similar
to an associative memory search: thus the name “’set-associative.” The hit ratio
will improve as the set size increases because more words with the same index
but different tags can reside in cache. However, an increase in the set size
increases the number of bits in words of cache and requires more complex
comparison logic.

When a miss occurs in a set-associative cache and the set is full, it is
necessary to replace one of the tag-data items with a new value. The most
common replacement algorithms used are: random replacement, first-in, first-
out (FIFO), and least recently used (LRU). With the random replacement policy
the control chooses one tag-data item for replacement at random. The FIFO
procedure selects for replacement the item that has been in the set the longest.
The LRU algorithm selects for replacement the item that has been least recently
used by the CPU. Both FIFO and LRU can be implemented by adding a few
extra bits in each word of cache.

Writing into Cache

An important aspect of cache organization is concerned with memory write
requests. When the CPU finds a word in cache during a read operation, the
main memory is not involved in the transfer. However, if the operation is a
write, there are two ways that the system can proceed.
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The simplest and most commonly used procedure is to update main
memory with every memory write operation, with cache memory being up-
dated in parallel if it contains the word at the specified address. This is called
the write-through method. This method has the advantage that main memory
always contains the same data as the cache. This characteristic is important in
systems with direct memory access transfers. It ensures that the data residing
in main memory are valid at all times so that an /O device communicating
through DMA would receive the most recent updated data.

The second procedure is called the write-back method. In this method only
the cache location is updated during a write operation. The location is then
marked by a flag so that later when the word is removed from the cache it is
copied into main memory. The reason for the write-back method is that during
the time a word resides in the cache, it may be updated several times; however,
as long as the word remains in the cache, it does not matter whether the copy
in main memory is out of date, since requests from the word are filled from
the cache. Itis only when the word is displaced from the cache that an accurate
copy need be rewritten into main memory. Analytical results indicate that the
number of memory writes in a typical program ranges between 10 and 30
percent of the total references to memory.

Cache Initialization
One more aspect of cache organization that must be taken into consideration
is the problem of initialization. The cache is initialized when power is applied
to the computer or when the main memory is loaded with a complete set of
programs from auxiliary memory. After initialization the cache is considered
to be empty, but in effect it contains some nonvalid data. It is customary to
include with each word in cache a walid bit to indicate whether or not the word
contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit of
a particular cache word is set to 1 the first time this word is loaded from main
memory and stays set unless the cache has to be initialized again. The intro-
duction of the valid bit means that a word in cache is not replaced by another
word unless the valid bit is set to 1 and a mismatch of tags occurs. If the valid
bit happens to be 0, the new word automatically replaces the invalid data. Thus
the initialization condition has the effect of forcing misses from the cache until
it fills with valid data.

12-6 Virtual Memory

In a memory hierarchy system, programs and data are first stored in auxiliary
memory. Portions of a program or data are brought into main memory as they
are needed by the CPU. Virtual memory is a concept used in some large
computer systems that permit the user to construct programs as though alarge
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memory space were available, equal to the totality of auxiliary memory. Each
address that is referenced by the CPU goes through an address mapping from
the so-called virtual address to a physical address in main memory. Virtual
memory is used to give programmers the illusion that they have a very large
memory at their disposal, even though the computer actually has a relatively
small main memory. A virtual memory system provides a mechanism for
translating program-generated addresses into correct main memory locations.
This is done dynamically, while programs are being executed in the CPU. The
translation or mapping is handled automatically by the hardware by means of
a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a virtual address, and the set
of such addresses the address space. An address in main memory is called a
location or physical address. The set of such locations is called the memory space.
Thus the address space is the set of addresses generated by programs as they
reference instructions and data; the memory space consists of the actual main
memory locations directly addressable for processing. In most computers the
address and memory spaces are identical. The address space is allowed to be
larger than the memory space in computers with virtual memory.

As an illustration, consider a computer with a main-memory capacity of

32K words (K = 1024). Fifteen bits are needed to specify a physical address in

memory since 32K = 2", Suppose that the computer has available auxiliary
memory for storing 22 = 1024K words. Thus auxiliary memory has a capacity
for storing information equivalent to the capacity of 32 main memories. Denot-
ing the address space by N and the memory space by M, we then have for this
example N = 1024K and M = 32K.

In a multiprogram computer system, programs and data are transferred
to and from auxiliary memory and main memory based on demands imposed
by the CPU. Suppose that program 1 is currently being executed in the CPU.
Program 1 and a portion of its associated data are moved from auxiliary
memory into main memory as shown in Fig. 12-16. Portions of programs and
data need not be in contiguous locations in memory since information is being
moved in and out, and empty spaces may be available in scattered locations
in memory.

In a virtual memory system, programmers are told that they have the total
address space at their disposal. Moreover, the address field of the instruction
code has a sufficient number of bits to specify all virtual addresses. In our
example, the address field of an instruction code will consist of 20 bits but
physical memory addresses must be specified with only 15 bits. Thus CPU will
reference instructions and data with a 20-bit address, but the information at
this address must be taken from physical memory because access to auxiliary
storage for individual words will be prohibitively long. (Remember that for
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Figure 12-16 Relation between address and memory space in a virtual
memory system.

efficient transfers, auxiliary storage moves an entire record to the main mem-
ory.) A table is then needed, as shown in Fig. 12-17, to map a virtual address
of 20 bits to a physical address of 15 bits. The mapping is a dynamic operation,
which means that every address is translated immediately as a word is refer-
enced by CPU.

The mapping table may be stored in a separate memory as shown in
Fig. 12-17 or in main memory. In the first case, an additional memory unit is
required as well as one extra memory access time. In the second case, the table

Figure 12-17 Memory table for mapping a virtual address.
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takes space from main memory and two accesses to memory are required with
the program running at half speed. A third alternative is to use an associative
memory as explained below.

Address Mapping Using Pages

The table implementation of the address mapping is simplified if the informa-
tion in the address space and the memory space are each divided into groups
of fixed size. The physical memory is broken down into groups of equal size
called blocks, which may range from 64 to 4096 words each. The term page refers
to groups of address space of the same size. For example, if a page or block
consists of 1K words, then, using the previous example, address space is
divided into 1024 pages and main memory is divided into 32 blocks. Although
both a page and a block are split into groups of 1K words, a page refers to the
organization of address space, while a block refers to the organization of
memory space. The programs are also considered to be split into pages.
Portions of programs are moved from auxiliary memory to main memory in
records equal to the size of a page. The term “page frame” is sometimes used
to denote a block.

Consider a computer with an address space of 8K and a memory space
of 4K. If we split each into groups of 1K words we obtain eight pages and four
blocks as shown in Fig. 12-18. At any given time, up to four pages of address
space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if each
virtual address is considered to be represented by two numbers: a page number
address and a line within the page. In a computer with 2’ words per page, p
bits are used to specify a line address and the remaining high-order bits of the
virtual address specify the page number. In the example of Fig. 12-18, a virtual
address has 13 bits. Since each page consists of 2'° = 1024 words, the high-
order three bits of a virtual address will specify one of the eight pages and the
low-order 10 bits give the line address within the page. Note that the line
address in address space and memory space is the same; the only mapping
required is from a page number to a block number.

The organization of the memory mapping table in a paged system is
shown in Fig. 12-19. The memory-page table consists of eight words, one for
each page. The address in the page table denotes the page number and the
content of the word gives the block number where that page is stored in main
memory. The table shows that pages 1, 2, 5, and 6 are now available in main
memory in blocks 3, 0, 1, and 2, respectively. A presence bit in each location
indicates whether the page has been transferred from auxiliary memory into
main memory. A 0 in the presence bit indicates that this page is not available
in main memory. The CPU references a word in memory with a virtual address
of 13 bits. The three high-order bits of the virtual address specify a page
number and also an address for the memory-page table. The content of the
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Figure 12-18 Address space and memory space split into groups of 1K words.
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word in the memory page table at the page number address is read out into
the memory table buffer register. If the presence bit is a 1, the block number
thus read is transferred to the two high-order bits of the main memory address
register. The line number from the virtual address is transferred into the 10
low-order bits of the memory address register. A read signal to main memory

Table
address
000

001
010
011
100
101
110
111

Figure 12-19 Memory table in a paged system.
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transfers the content of the word to the main memory buffer register ready to
be used by the CPU. If the presence bit in the word read from the page table
is 0, it signifies that the content of the word referenced by the virtual address
does not reside in main memory. A call to the operating system is then
generated to fetch the required page from auxiliary memory and place it into
main memory before resuming computation.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage
utilization. In the example of Fig. 12-19 we observe that eight words of memory
are needed, one for each page, but at least four words will always be marked
empty because main memory cannot accommodate more than four blocks. In
general, a system with n pages and m blocks would require a memory-page
table of n locations of which up to m blocks will be marked with block numbers
and all others will be empty. As a second numerical example, consider an
address space of 1024K words and memory space of 32K words. If each page
or block contains 1K words, the number of pages is 1024 and the number of
blocks 32. The capacity of the memory-page table must be 1024 words and only
32 locations may have a presence bit equal to 1. At any given time, at least 992
locations will be empty and not in use.

A more efficient way to organize the page table would be to construct it
with a number of words equal to the number of blocks in main memory. In this

‘way the size of the memory is reduced and each location is fully utilized. This

method can be implemented by means of an associative memory with each
word in memory containing a page number together with its corresponding

Figure 12-20 An associative memory page table.
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block number. The page field in each word is compared with the page number
in the virtual address. If a match occurs, the word is read from memory and
its corresponding block number is extracted.

Consider again the case of eight pages and four blocks as in the example
of Fig. 12-19. We replace the random access memory-page table with an
associative memory of four words as shown in Fig. 12-20. Each entry in the
associative memory array consists of two fields. The first three bits specify a
field for storing the page number. The last two bits constitute a field for storing
the block number. The virtual address is placed in the argument register. The
page number bits in the argument register are compared with all page numbers
in the page field of the associative memory. If the page number is found, the
5-bit word is read out from memory. The corresponding block number, being
in the same word, is transferred to the main memory address register. If no
match occurs, a call to the operating system is generated to bring the required
page from auxiliary memory.

Page Replacement

A virtual memory system is a combination of hardware and software tech-
niques. The memory management software system handles all the software
operations for the efficient utilization of memory space. It must decide (1)
which page in main memory ought to be removed to make room for a new
Ppage, (2) when a new page is to be transferred from auxiliary memory to main
memory, and (3) where the page is to be placed in main memory. The hardware
mapping mechanism and the memory management software together consti-
tute the architecture of a virtual memory.

When a program starts execution, one or more pages are transferred into
main memory and the page table is set to indicate their position. The program
is executed from main memory until it attempts to reference a page that is still
in auxiliary memory. This condition is called page fault. When page fault occurs,
the execution of the present program is suspended until the required page is
brought into main memory. Since loading a page from auxiliary memory to
main memory is basically an I/O operation, the operating system assigns this
task to the I/O processor. In the meantime, control is transferred to the next
program in memory that is waiting to be processed in the CPU. Later, when
the memory block has been assigned and the transfer completed, the original
program can resume its operation.

When a page fault occurs in a virtual memory system, it signifies that the
page referenced by the CPU is not in main memory. A new page is then
transferred from auxiliary memory to main memory. If main memory is full,
it would be necessary to remove a page from a memory block to make room
for the new page. The policy for choosing pages to remove is determined from
the replacement algorithm that is used. The goal of a replacement policy is to
try to remove the page least likely to be referenced in the immediate future.

Two of the most common replacement algorithms used are the first-in,
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first-out (FIFO) and the least recently used (LRU). The FIFO algorithm selects for
replacement the page that has been in memory the longest time. Each time a
page is loaded into memory, its identification number is pushed into a FIFO
stack. FIFO will be full whenever memory has no more empty blocks. When
anew page must be loaded, the page least recently brought in is removed. The
page to be removed is easily determined because its identification number is
at the top of the FIFO stack. The FIFO replacement policy has the advantage
of being easy to implement. It has the disadvantage that under certain circum-
stances pages are removed and loaded from memory too frequently.

The LRU policy is more difficult to implement but has been more attrac-
tive on the assumption that the least recently used page is a better candidate
for removal than the least recently loaded page as in FIFO. The LRU algorithm
can be implemented by associating a counter with every page that is in main
memory. When a page is referenced, its associated counter is set to zero. At
fixed intervals of time, the counters associated with all pages presently in
memory are incremented by 1. The least recently used page is the page with
the highest count. The counters are often called aging registers, as their count
indicates their age, that is, how long ago their associated pages have been
referenced.

12-7 Memory Management Hardware

In a multiprogramming environment where many programs reside in memory
it becomes necessary to move programs and data around the memory, to vary
the amount of memory in use by a given program, and to prevent a program
from changing other programs. The demands on computer memory brought
about by multiprogramming have created the need for a memory management
system. A memory management system is a collection of hardware and soft-
ware procedures for managing the various programs residing in memory. The
memory management software is part of an overall operating system available
in many computers. Here we are concerned with the hardware unit associated
with the memory management system.
The basic components of a memory management unit are:

1. A facility for dynamic storage relocation that maps logical memory
references into physical memory addresses

2. A provision for sharing common programs stored in memory by differ-
ent users

3. Protection of information against unauthorized access between users
and preventing users from changing operating system functions

The dynamic storage relocation hardware is a mapping process similar to
the paging system described in Sec. 12-6. The fixed page size used in the virtual



